Low field NMR as an alternative technique to estimate of density and viscosity in toluene-heavy oil mixtures

Author:

Sandoval MariaORCID,Valderrama P HerinORCID,Sánchez M MirandaORCID,Molina Velasco Daniel,Muñoz N SamuelORCID

Abstract

 The success of low field Nuclear Magnetic Resonance (LF-NMR) to estimate heavy oil properties depends on a good selection of mathematical models and fitting parameters. Since the correlations proposed are not universally applicable, in this study, a NMR published model was chosen and tuned to determine the density and viscosity of several mixtures of a Colombian heavy oil with toluene. The process began by mixing toluene with heavy oil to obtain several measuring points with properties similar to those of heavy oils. Each mixture was taken to a 7.5 MHz spectrometer at 40°C, where NMR parameters were acquired and used in the five pre-selected mathematical models. The reliability of viscosity measurements was analysed with the root mean square error (RMSE) and maximum absolute error (MAE). After the NLS regression process, the most accurate prediction was reached through the Burcaw model, with RMSE values of 40.55 cP. On the other hand, the density was estimated with the Wen correlation with results showing a relative error percentage of less than 1%. According to such error values, the tuned models are considered a starting point to extend the NRM technique use to other Colombian heavy oils with low uncertainty levels.

Funder

Agencia Nacional de Hidrocarburos

Universidad Industrial de Santander

Publisher

Instituto Colombiano del Petroleo

Subject

General Energy,General Chemical Engineering,Geology,Geophysics,Fuel Technology,Renewable Energy, Sustainability and the Environment,Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3