A Large-Scale Study for a Multi-Basin Machine Learning Model Predicting Horizontal Well Production

Author:

Amr Salma1,El Ashhab Hadeer1,El-Saban Motaz1,Schietinger Paul1,Caile Curtis1,Kaheel Ayman1,Rodriguez Luis1

Affiliation:

1. Raisa Energy

Abstract

Abstract This paper proposes a set of data driven models that use state of the art machine learning techniques and algorithms to predict monthly production of unconventional horizontal wells. The developed models are intended to forecast both producing locations (PLs) and non-producing well locations (NPLs). Furthermore, results of extensive experiments are presented that were conducted using different methodologies and features combinations. Results are measured against conventional Arps's decline curve analysis showing significant boost in prediction accuracy for both NPLs and PLs. The most accurate model outperforms Arps's-based estimates by almost 23% for NPLs and 36% for PLs. Results also show that using data from multiple basins in training models for another basin yields gains in accuracy, especially for basins with relatively small data.

Publisher

SPE

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3