InSAR: Pro-Active Technology for Monitoring Environmental Safety and for Reservoir Management

Author:

Leezenberg Pieter Bas1,Allan Malcolm E.1

Affiliation:

1. SkyGeo Inc.

Abstract

Abstract InSAR (Interferometric Synthetic Aperture Radar) is a technology used to measure changes in surface elevation between successive passes of orbiting satellites. These changes can be used to understand imbalances in the subsurface between fluid withdrawal and injection, as well as near-surface ruptures caused by failure of well integrity. Satellites have recorded SAR data since the 1990s, and the data have become increasingly higher resolution and more frequently acquired. Combined with faster algorithms and processing chains for interferometry, this has enabled detection of smaller and faster changes at the surface. This in turn has caused a step-change in the usefulness of the data and the interpretations. The result is the ability to depend on the data to monitor the effects of production and injection processes almost continuously. We review several cases to demonstrate the value of rapid revisit, high resolution InSAR. The first is the giant Belridge field in the San Joaquin valley of California, historically the poster child for this application. The diatomite reservoir rock has 60% porosity and is fluid supported. When equilibrium between injection to production is not maintained, the volume changes in the reservoir cause the ground surface to move up or down by amounts detectable with InSAR enabling a feedback loop for injection optimization. The field also has many wells with compromised wellbore integrity that can provide a pathway for reservoir fluids to move upwards towards the ground surface. When water, oil, or steam move out of the reservoir and into the overburden, a potential precursor can be detected provided InSAR is configured carefully. In the second case, InSAR also provides visualizations of ground level changes over a gas field: at the giant Groningen gas field in the Netherlands, long term InSAR time series measurements of elevation changes are used to constrain models about compaction and reactivation of buried faults. Parts of the field that are used for seasonal gas storage and charging/discharging cycles can also be effectively monitored. Measurement of surface deformation by high resolution, fast revisit, optimized InSAR provides an insight into the reservoir and the efficiency of its management. It also provides an early warning of potential problems that, if not corrected, may result in harm to the environment. These step changes in quantity and quality of available InSAR data mean that the remaining barrier to being used for actionable insights is in the widespread inverse modeling of the surface data to sub-surface mass flows.

Publisher

SPE

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3