Progress Toward Pilot-Scale Simulation of In-Situ Combustion Incorporating Geomechanics

Author:

Li Y.1,Manrique E. J.2,Kovscek A. R.3

Affiliation:

1. Energy Resources Engineering, Stanford University

2. Ecopetrol

3. Energy Resources Engineering, Stanford University (Corresponding author)

Abstract

Summary In-situ combustion (ISC) is a promising thermal enhanced oil recovery method with benefits for deep reservoirs, potentially lesser energy requirements as compared to steam injection, and low opportunity cost. Although successful ISC projects have been developed all over the world, challenges still exist including difficulties in monitoring combustion-front progress in the field, describing multiscale physical processes, characterizing crude oil kinetics fully, and simulating ISC at field scale. This work predicts combustion front propagation and the effect of thermally induced stress at the scale of an ISC pilot project. Reservoir deformation was characterized by a geomechanical model to investigate the correlation of combustion front progress with reservoir and surface deformation. We upscaled the reaction kinetics directly from combustion tube experiments and calibrated the laboratory-scale model compared with experimental measurements. We then upscaled numerical simulation to a 3D geometry incorporating a geomechanical model. The change in scale is significant as the combustion tube is 6.56 ft (2 m) in length, whereas the dimensions of the 3D model are 1,440 ft by 1,440 ft (439 m) by 1,400 ft (427 m). The elastic properties were defined by Young’s modulus and Poisson’s ratio, whereas the plastic properties were defined by a Mohr-Coulomb model. A sensitivity study examined the reliability of the model, showing the reaction progress and geomechanical responses were not significantly impacted by gridblock dimensions and reservoir heterogeneity. Finally, a field-scale model was developed covering an area of 5,960 ft (1817 m) by 4,200 ft (1280 m). We observed successful ISC simulation including ignition as air injection started. The temperature increased immediately to more than 800°C (1,400°F) based on the chemical kinetics implemented. The temperature history indicated that the combustion front propagated from the injection well into the reservoir with an average velocity of 0.16 ft/D (0.049 m/d). A surface deformation map correlated with the progress of ISC in the subsurface. Land surface uplift because of ISC ranges from 0.1 ft (0.03 m) to several feet, depending on the rock properties and subsurface events. This proof-of-concept model indicated strong potential to detect the surface movement using interferometric synthetic aperture radar (InSAR) and/or tiltmeters to monitor dynamically combustion front positions in subsurface.

Publisher

Society of Petroleum Engineers (SPE)

Subject

Geology,Energy Engineering and Power Technology,Fuel Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3