Next-Generation Kick Detection During Connections: Influx Detection at Pumps Stop (IDAPS) Software

Author:

Tarr B. A.1,Ladendorf D. W.1,Sanchez D..1,Milner G. M.2

Affiliation:

1. Shell International Exploration and Production

2. CoVar Applied Technologies

Abstract

Summary At least 25% of all influx events on deepwater wells occur while making connections, but few deepwater rig contractors use kick-detection alarms to alert the driller during a connection (Fraser et al. 2014; Brakel et al. 2015). Because of the transient-flow characteristics associated with connections, kick detection during connections is the most challenging to automate effectively. The Influx Detection at Pumps Stop (IDAPS) software was developed to provide early warning of abnormal flowback conditions during connections. Available flow-in, flow-out, pit volume, bit depth, and hole-depth real-time data are used as input data. Particular attention was paid to achieving high probability of detection (PD) at low false-alarm rates (FARs) to minimize nuisance alarms, and fast influx-detection times to reduce kick volumes. The use of IDAPS to reliably detect a formation-fluid influx has improved safety, operational efficiency, and driller situational awareness. IDAPS has been deployed in an operator's real-time operations center for monitoring critical offshore wells since 2014. During IDAPS operation, pumps-off occurrences are automatically detected from the ramp-down of pump strokes, and saved as unique events. Machine-learning algorithms are applied to recent pumps-off event flow-out and pit-volume data patterns to adaptively calculate limits for “normal” events. The adaptive nature of these limits allows IDAPS processing to adjust to changes such as increasing hole depth. Each new pumps-off event is evaluated in real-time, and statistically meaningful deviations from the recent “normal” limits generate corresponding possible influx notifications at one of four confidence levels (low, medium, high, and confirmed). In addition, on the basis of data-pattern-recognition algorithms, the software detects and notifies the user of circulation-system data-validity issues that could otherwise impair influx-detection performance [e.g., a malfunctioning flow sensor (including sticking of the commonly used flow-out paddle-style flow sensor)], inconsistent pit volume gains, and others. Overlay plots of current and historical flow and pit-volume data have been shown to be valuable in significantly reducing the time required by the user to validate anomalous pumps-off event data automatically identified by IDAPS. On the basis of an extensive validation process, that included more than 1,300 historical pumps-off events, the demonstrated FAR for IDAPS was 1 per 195 connections with a 100% influx-detection rate, with an associated confirmed influx-detection time as fast as 84 seconds after pumps stopped.

Publisher

Society of Petroleum Engineers (SPE)

Subject

Mechanical Engineering,Energy Engineering and Power Technology

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3