Understanding Imbibition Mechanisms of Catanionic Surfactant–Stabilized Nanoemulsion for Enhanced Oil Recovery in Tight Sandstone Reservoirs: Experimental and Numerical Assessment

Author:

Wei Bing1ORCID,Wang Lele2,Mao Runxue2,Yu Guanqun3,Wang Dianlin2,Lu Jun4ORCID,Tang Jinyu3ORCID

Affiliation:

1. State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University (Corresponding author)

2. State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University

3. Department of Chemical and Petroleum Engineering, United Arab Emirates University

4. McDougall School of Petroleum Engineering, The University of Tulsa

Abstract

Summary Surfactant-induced imbibition is considered a promising method for increasing oil recovery from tight oil reservoirs beyond primary production. Nanoemulsion (nE) offers a great potential for this application owing to its unique physicochemical properties, such as kinetic stability, large surface area, and low oil-aqueous interfacial tension (IFT). Herein, we designed and prepared a series of surfactant-stabilized oil-in-water (O/W) nE using efficient catanionic surfactants by a low-energy method. The physicochemical properties of the nE samples were comprehensively characterized to better perform experimental and numerical simulations and constrain the modeling. We conducted imbibition tests on Chang 7 tight cores using nE and brine and also assessed the imbibition dynamics. Results indicated that nE was successfully synthesized at a surfactant concentration ranging from 0.4 to 1.0 wt%. The oil droplets in nE had a mean size of 10 nm. All the nE samples were able to lower the oil-aqueous IFT to an ultralow level of 10–3 mN/m. In addition, nE demonstrated superior capacities in wettability alteration, and oil solubilization and emulsification, which were all integrated into numerical modeling. The imbibition oil recovery was increased by 18.8% of the initial oil in place when nE1 (0.4 wt%) was used compared to that of brine. Because of the interactions among oil, nE, and rock surface, nE required a longer time to reach imbibition equilibrium than brine. The simulation results, for the first time, suggested that the dominant imbibition mechanisms of nE varied with time, during which IFT reduction and wettability alteration played the leading roles in the first 50 hours. The reactions of oil solubilization and emulsification became significant after 50 hours and then contributed equally to the oil recovery with IFT reduction and wettability alteration. The diffusion of nanosized oil droplets increased the equilibrium time of imbibition, thereby promoting the ultimate oil recovery.

Publisher

Society of Petroleum Engineers (SPE)

Subject

Geotechnical Engineering and Engineering Geology,Energy Engineering and Power Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3