Dimensionless Section-Level Cumulative Oil Vs. Pumped Fluid Normalization Plot in Unconventional Development

Author:

Rosenhagen Nicolas M.1,Nash Steven D.2,Dobbs Walter C.2,Tanner Kevin V.2

Affiliation:

1. Colorado School of Mines

2. Anadarko Petroleum Corporation

Abstract

Abstract The volume of stimulation fluid injected during hydraulic fracturing is a key performance driver in the horizontal development of the Niobrara formation in the Denver-Julesburg (DJ) Basin, Colorado. Oil production per well generally increases with stimulation fluid volume. Often, operators normalize both production and fluid volume based on stimulated lateral length and investigate relationships using "per-ft" variables. However, data from well-based approaches commonly display such wide distributions that no useful relationships can be inferred. To improve data correlations, multivariate analysis normalizes for parameters such as thermal maturity, depth, depletion, proppant intensity, drawdown, geology and completion design. Although advancements in computing power have decreased cycle times for multivariate analysis, preparing a clean dataset for thousands of wells remains challenging. A proposed analytical method using publicly available data allows interpreters to see through the noise and find informative correlations. Using a data set of over 5000 wells, we aggregate cumulative oil production and stimulation fluid volumes to a per-section basis then normalize by hydrocarbon pore volume (HCPV) per section. Dimensionless section-level Cumulative Oil versus Stimulation Fluid Plots ("Normalization" or "N-Plot") present data distributions sufficiently well-defined to provide an interpretation and design basis of well spacing and stimulation fluid volumes for multi-well development. When coupled with geologic characterization, the trends guide further refinement of development optimization and well performance predictions. Two example applications using the N-Plot are introduced. The first involves construction of predictive production models and associated evaluation of alternative development scenarios with different combinations of well spacing and completion fluid intensity. The second involves "just-in-time" modification of fluid intensity for drilled but uncompleted wells (DUC's) to optimize cost-forward project economics in an evolving commodity price environment.

Publisher

SPE

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3