Robust Correlation Between Effective Energy Injected and Total Production Output: Unpacking the Significance

Author:

Navaiz Awais1,Doucette Jon1,Mogck Drew1

Affiliation:

1. Halliburton, Denver, CO, United States

Abstract

Abstract Continuing from the previous publication (Navaiz et al. 2023) detailing the hydraulic fracturing energy system and energy transfer as fluid and proppant are pumped from the surface into formation. this paper focuses on the validating the importance of effective energy delivered to formation and its correlation to total productivity. Combining extensive in-house pumping data and well-production data available from the public domain, a two-dimensional approach cross-plotting total effective energy injected per unit area against production output shows a highly correlative positive relationship (R2>0.75) across several basins in North America. This strong relationship not only reinforces the value of this energy analysis concept in hydraulic fracturing established by the authors previously. It also validates the conservation of energy principle highlighting the usefulness of relating effective energy injected into formation to a direct increase in reservoir energy potential and therefore a greater potential for total productivity. With the unconventional oil and gas industry highly focused on capital efficiency, the effective energy metric enables near-instantaneous optimization of development costs rather than iterating on 6-month or 1-year production performance. Time and capital can then be invested in technologies and processes that maximize effective energy and resultant productivity or minimize energy losses in the system.

Publisher

SPE

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3