Testing and Characterization of High-Frequency Torsional Oscillations in a Research Lab to Develop New HFTO Suppressing Solutions

Author:

Eli Everhard1,Armin Kueck1,Xu Huang1,Sui-Long Lam2,Dennis Heinisch2,Hanno Reckmann2,John Bomidi1

Affiliation:

1. Baker Hughes, Drill Bits, The Woodlands, USA

2. Baker Hughes, Drilling Services, Celle, Germany

Abstract

AbstractVibration from High Frequency Torsional Oscillation (HFTO) damages drilling tools and electronics. Destructive HFTO can occur in harsh drilling environments which reduces drilling performance and reliability and leads to non-productive time and associated costs. Because it is faster, cheaper, more precise, and more controllable compared to field testing, a laboratory test environment is optimal for developing HFTO countermeasures. However, until now, a full-scale test rig that reliably generates controllable HFTO did not exist. This paper will describe for the first time a laboratory drilling rig that generates HFTO and, therefore, can be used to develop and qualify anti-HFTO procedures and tools.To study the HFTO susceptibility of bit-rock interactions, the full-scale laboratory drilling rig consists of a mud circulation system, hoisting system, bit, and BHA coupled with high-frequency instrumentation to measure torsional vibrations on a millisecond scale. Finite element models (FEM) built to characterize the drilling simulator are used to correctly interpret the results of drilling data. An experimental modal analysis (EMA) is used to validate and refine the FEM models. Next, PDC-bits are used to drill several rocks under varying pressures, RPMs, and weights on bit (WOB). The resulting high-frequency torque and tangential acceleration data are compared to a checklist of necessary criteria to prove that self-excited HFTO occur in the lab. These measurements, when considered with their axial sensor positions, are used to reliably identify HFTO and compare bit-rock combinations by their susceptibility to HFTO.Results of the FEM-models and the EMA agree on the characteristic mode shapes and dominant frequencies which match dynamic measurements. Recorded data show that self-excited HFTO are reliably excited when the criteria for self-excitation are fulfilled. Vibration energy is concentrated in one dominant mode, the vibration amplitude is scaled by the RPM, and the frequency of torsional oscillations is independent of the rig RPM. HFTO-prone rocks are identified using segmented rock specimen tests. The excitation mechanism in the laboratory test rig corresponds to the mechanism in the field. Stability maps show that bits differ in excitability allowing a comparison based on bit features and subsequent bit improvements. Methods and tools tested in the lab environment form a framework for developing anti-HFTO field solutions and operational guidelines.The upgraded full-scale drilling rig reliably generates HFTO in a laboratory environment under realistic drilling conditions. When coupled with extended research into the combination of bit, rock and BHA variables that lead to HFTO susceptibility, this rig will enable faster and cost-efficient product and procedure development cycles for proven and validated anti-HFTO tools and field guidelines. An HFTO suppressing bit or an HFTO suppressing damping device will have a significant impact on BHA reliability, drilling performance, and reduced NPT.

Publisher

SPE

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3