Effects of RPM and ROP on PDC Bit Steerability

Author:

Ernst Stephen1,Pastusek Paul E.2,Lutes Paul Joseph3

Affiliation:

1. Hughes Christensen

2. Hughes Christensen Co.

3. Baker Hughes Inc

Abstract

Abstract Directional drilling is a critical necessity in many of today's wells. Accurate prediction and awareness of achievable build rates is vital in lowering drilling cost. The science behind controlled wellbore deviation has advanced beyond prediction based solely on BHA geometry. Although BHA configuration is an important factor, interaction between each of the four primary components (bit, BHA, operating parameters and formation) must be evaluated thoroughly. Previous papers have described how changes in bit characteristics, BHA configuration and various formations influence build rates. With regards to operating parameters, weight-on-bit (WOB) is well known to be beneficial in increasing the desired build rate under certain drilling conditions and yet does not help in other situations. We propose that most of the weight-on-bit effects are actually due to its influence on rate of penetration and bit tilt. However, the influence of operating parameters has not been fully investigated. RPM has been neglected as a significant influence on steerability. In theoretical studies, these properties have been measured and quantified with the use of a full scale drilling laboratory and commercially available PDC bits. This paper investigates the effects of RPM and ROP on build rate and illustrates the importance of these parameters. Practical guidelines for understanding the effect of operating parameters on steerable systems are also provided. Background There is general consensus in the industry that increasing the RPM of the bit provides more opportunities to cut the formation in a given amount of time. Also by slowing the forward ROP of the bit, the time allowed to side cut would be increased resulting in higher steerability. The results presented in this paper will validate and quantify these theories. Drillers have long known that controlled drilling parameters (weight-on-bit and RPM) could be used in order to effect build, walk and drop rates of a bit/BHA system. The method of limiting WOB and increasing RPM for a pendulum assembly, also known as fanning, has been recognized to promote the assembly's drop tendency. Controlling the penetration rate with a benthousing motor has been a well documented procedure for increasing build rates. However, little more than general statements and rules of thumb exist. The science behind build rate prediction has primarily been focused on computer modeling of the BHA. Most of today's software does not take into account the bit's interaction with the formation in the forward direction. Unsurprisingly, the interaction between the bit and borehole in the lateral direction has also been overlooked due to its complexity. This computer modeling encourages limitations not found in drilling lab testing or the field (i.e. limitations of the software, quality of the input data, translation/interpretation issues, unknown factors or ones that simply cannot be modeled, etc). With the use of full scale drilling laboratory, the effects of drilling parameters have been investigated. The test apparatus simulates the bit tilt and side loading normally induced by a BHA inside the wellbore. Precise lateral displacements are recorded within thousandths of an inch without the external inconsistencies usually seen in the field including BHA induced vibrations, unreliable parameter control and deviation measurement, energy deprived from the bit by the BHA, formation heterogeneity, borehole quality issues, etc. The rocks used in the drilling lab simulator are homogeneous blocks of medium and hard limestone. This allows a commercially available bit to drill several feet of formation in a "near field" environment at full scale sizes. This testing method produces well defined results that are consistent with field results.

Publisher

SPE

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3