Compositional Space Parameterization: Multicontact Miscible Displacements and Extension to Multiple Phases

Author:

Voskov D. V.1,Tchelepi H. A.1

Affiliation:

1. Stanford University

Abstract

Summary We generalize the compositional space parameterization (CSP) approach, which was originally developed for immiscible two-phase multicomponent problems, to multicontact miscible displacements. The tie-line based parameterization method improves both the accuracy of the phase-behavior representation as well as the efficiency of equation of state (EOS) computations in compositional flow simulation. For immiscible compositional simulation, compositional space adaptive tabulation (CSAT) can be used to avoid most of the redundant EOS calculations. Because the supercritical region cannot be parameterized using tie-lines, the original CSAT approach is not effective for modeling multicontact miscible gas injection processes. To deal with supercritical compositions, a supercritical state criteria (SSC) algorithm based on adaptive tabulation of the minimal critical pressure (MCP) tie-lines is proposed. For general-purpose simulation of miscible and immiscible compositional displacement processes, we combined the adaptive CSAT strategy in the region of tie-line extensions and the adaptive SSC scheme; we refer to the overall framework as CSAT. Results of several challenging tests of practical interest indicate that the general CSAT strategy is quite robust and that it leads to an order of magnitude gain in computational efficiency. We also describe the extension of the CSP framework for mixtures that form more than two phases.

Publisher

Society of Petroleum Engineers (SPE)

Subject

Geotechnical Engineering and Engineering Geology,Energy Engineering and Power Technology

Cited by 29 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3