High-Temperature DAP Treatments of Carbonate Rocks for Proppant Embedment Severity Mitigation

Author:

Samarkin Yevgeniy1,Amao Abduljamiu Olalekan1,Aljawad Murtada Saleh1,Sølling Theis Ivan1,AlTammar Murtadha J.2,Alruwaili Khalid M.2

Affiliation:

1. King Fahd University of Petroleum and Minerals

2. Saudi Aramco

Abstract

AbstractFractured carbonate formations composed of chalk and limestone rock lithologies develop several issues over time, reducing fractures’ conductivity. One such issue is the embedment of the proppant that happens due to the soft nature of the carbonate rocks. Reduction of fractures’ conductivity results in the need for refracturing operations that require pumping tremendous amounts of water. The refracturing operations can be avoided if the fractures are maintained conductive for a longer time. This research targets reducing the severity of proppant embedment issues in carbonate formations through rock hardening by diammonium hydrogen phosphate (DAP) treatment.The chalk and limestone rock samples were treated with a DAP solution of 0.8M concentration at three temperatures, namely 30°C (ambient), 50°C, and 80°C. The samples were treated by immersion in solution, in which rocks were kept reacting for 72 hours. The treated samples were analyzed using the SEM-EDX technique to identify new minerals and changes in the morphology of the rock samples. Moreover, the changes in the hardness of the samples were analyzed by the impulse hammering technique. In addition, the proppant embedment scenario was mimicked in the rocks by utilizing Brinell hardness measurements before and after their treatment.The SEM analysis demonstrated that the treatment of carbonate rocks with a DAP solution results in the formation of hydroxyapatite (HAP) minerals. In addition, it was observed that the temperature of the treatment affects the crystallization patterns of the HAP minerals. Further results demonstrated that DAP treatment at elevated temperatures significantly improves the hardness of the samples. Young’s modulus of the rock samples increased by up to 60 - 80% after the treatment. In addition, studies have shown the improvement of rocks’ resistance to indentations. The sizes of the dents created by the Brinell hardness device were smaller than before the treatment. Overall, it was demonstrated that the Brinell hardness of the rock samples improved by more than 100%.This research demonstrated that treating carbonate rocks with DAP solution results in their hardening and improved samples’ resistance to indentation. Moreover, the treatment of rock samples at temperatures similar to reservoir conditions even further improves the mechanical properties of the carbonate rocks. Upscaling laboratory DAP treatment techniques for reservoir applications will introduce new practical methods for maintaining the long-term conductivity of propped fractures. Such a procedure will help avoid refracturing operations, resulting in better and more sustainable management of water resources.

Publisher

SPE

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3