In-situ micro-CT scanning and compressive strength assessment of diammonium hydrogen phosphate (DAP) treated chalk

Author:

Samarkin Yevgeniy,Amao Abduljamiu Olalekan,Aljawad Murtada Saleh,Borji Mostafa,Scott Norman,AlTammar Murtadha J.,Alruwaili Khalid M.

Abstract

AbstractThe occurrence of wellbore mechanical failure is a consequence of the interaction among factors such as in situ stress, rock strength, and engineering procedures. The process of hydrocarbons production, causing reduction of pore pressure, alters the effective stresses in the vicinity of a borehole, leading to borehole instability issues. Estimating the rocks’ elastic modulus and compressive strength is essential to comprehend the rock matrix’s mechanical response during drilling and production operations. This study aimed to assess the practicality of Diammonium Hydrogen Phosphate (DAP) application as a chemical for strengthening chalk in hydrocarbon reservoirs, to make it resistant to high stresses and failure during drilling and production. The mechanical and physical properties of Austin chalk rock samples treated with DAP under mimicked reservoir conditions were studied. The results showed that DAP is a highly effective carbonate rock consolidating agent that improves the mechanical strength of the chalk. Compressive test measurements conducted on rocks treated at two different temperatures (ambient and 50 °C) showed that DAP effectively strengthened the rock matrix, resulting in an increase in its compressive strength (22–24%) and elastic modulus (up to 115%) compared to the untreated sample. The favorable outcomes of this research suggest that the DAP solution holds promise as a consolidation agent in hydrocarbon reservoirs. This contributes to the advancement of knowledge regarding effective strategies for mitigating mechanical failures of the wellbore during drilling and production.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3