A Machine Learning Analysis to Relate Flow Pattern and Pressure Gradient During Gas Kicks Under Static Conditions

Author:

Obi Chinemerem Edmond1,Falola Yusuf1,Manikonda Kaushik1,Hasan Abu Rashid1,Rahman Mohammad Azizur2

Affiliation:

1. Texas A&M University

2. Texas A&M University, Qatar

Abstract

AbstractWarning signs of possible kick during drilling operation can either be primary (flow rate increase and pit gain) or secondary (drilling break, pump pressure decrease,). Drillers rely on pressure data at the surface to determine in-situ downhole conditions while drilling. The surface pressure reading is always available and accessible. However, understanding or interpretation of this data is often ambiguous. This study analyses significant kick symptoms in the wellbore annulus while under shut-in conditions.We have tied several observed annular flow patterns to the measured pressure gradient during water- air, and water-carbon dioxide complex flow. This is based on experiments in a 140-ft high flow loop, with a hydraulic diameter of approximately 3 in. The experiments were carried out under static conditions to simulate kick occurrence when the drilling fluid is not flowing, typically the wellbore is shut-in. We used an Artificial Neural Network (ANN) and K-Means clustering approach for kick prognosis. We trained these Machine learning models to detect kick symptoms from pressure response and gas evolution data collected between the kick occurrence and the Wellhead.The Artificial Neural Network (ANN) approach was relatively fast with a negligible difference in accuracy when compared for air influx and carbon dioxide influx for kick prognosis. The ANN resulted in an accuracy of about 90% and 93% for air-based kick prognosis. While the accuracy was 92% and 94% for carbon dioxide-based influx. With K-mean clustering, the Silhouette score were 0.5 and 0.6 for the air and carbon dioxide influx respectively. The estimation of the influx size and type is strongly a function of the duration of kick and bottom hole underbalanced pressure. Based on visual analysis, pit gain, and pressure signals, the quantity of the mass influx significantly controls the flow pattern, pressure losses, and pressure gradient as the kick migrates to the surface. The resulting turbulent flow after the initial kick (After Taylor bubble flow) varied with duration of kick, average liquid flow rate, influx type, and drilling scenario. We have tied the surface pressure readings to the flow regimes to better visualize well control approach while drilling. This is based on relating the significant kick symptoms we observed to the pressure readings at multiple locations and time, then training the Deep learning models based on this data.Although computationally demanding, the Deep-Learning model can use the surface pressure data to relay annular flow patterns while drilling. This work provides an alternative and relatively accessible primary kick detection tool for drillers based on measured pressure responses at the surface.

Publisher

SPE

Reference36 articles.

1. A deep learning model for process fault prognosis;Arunthavanathan;Process Safety and Environmental Protection,2021

2. Feature Engineering for Machine Learning;Casari,2018

3. Data-driven approach augmented in simulation for robust fault prognosis;Djeziri;Engineering Applications of Artificial Intelligence,2019

4. Two stage forecast engine with feature selection technique and improved meta-heuristic algorithm for electricity load forecasting;Ghadimi;Energy,2018

5. Fluid Flow and Heat Transfer in Wellbores,;Hasan,2018

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3