Visual Twin for Pipeline Leak Detection

Author:

Hamilton M.1,Al-Ammari W.2,AbuShanab Y.2,Sleiti A.2,Hassan R.3,Hassan I.4,Kaan M.S.4,Rezaei-Gomari S.5,Rahman M. A.4

Affiliation:

1. Computer Science, Memorial University, St. John's, NL, Canada

2. Mechanical Engineering, Qatar University, Doha, Qatar

3. Petroleum Engineering Department, Texas A&M University College State, USA

4. Petroleum Engineering Department, Texas A&M University at Qatar

5. Teeside University, Middlesbrough, UK

Abstract

Abstract Objectives/Scope We describe a visual digital twin system to allow for both operation and training of a data-driven pipeline leak detection system. We show system design in terms of its data inputs and the software system which incorporates this data in real time. This system allows visualization of pipeline data and machine learning-driven leak detection in a pipeline sitting in a subsea context. The intended purpose of the system is to both train operators of the leak detection system in its use and also provide high situational awareness to those tasked with monitoring pipeline deployments. The visual digital twin system uses gaming engine technology to achieve high visual quality. We also construct a novel software system enhancement to incorporate live data streams into the gaming engine environment. This allows real-time driving of gaming engine visualization elements with which we may augment the gaming engine environment. In terms of visualization, we focus on addressing problems of large ranges of multiple scales and providing high situational awareness which minimize operator fatigue and cognitive load. We show how multiple camera views in combination with a convenient user interface can help to address these issues. We demonstrate a digital twin system for leak detection. We show its realtime operation in a gaming engine environment with the ability to instantaneously incorporate outside data sources into the visualizations. We demonstrate using simulated pipeline flow data from sensors such as pressure, temperature, etc. This is visualized in the context of a subsea pipeline on a sea floor. Given the large range of scales, we demonstrate how we can view both the full kilometer scale pipeline and smaller subsections in the context of specific sensor data streams. The overall system demonstrates a novel combination of advanced software systems which incorporates real-time data stream with visualization using a high-fidelity gaming engine. The data used represents a leak detection scenario where both operator training and situational awareness are key desired outcomes.

Publisher

SPE

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3