Implications of Fracturing Pressure Data Recorded during a Horizontal Completion on Stage Spacing Design

Author:

Roussel Nicolas P.1,Manchanda Ripudaman2,Sharma Mukul M.2

Affiliation:

1. ConocoPhillips

2. The University of Texas at Austin

Abstract

Abstract Horizontal completions have changed considerably in the last few years in an effort to substantially improve the drainage of shale gas reservoirs. The spacing of fracture stages and perforation clusters are among the most crucial completion decisions that impact well productivity and EUR. Yet, the decision regarding stage spacing is rarely guided by an engineering process, as it remains a challenge to tie production performance and completion design. In this paper, we offer some insight on the impact of fracture spacing on the propagation direction of multiple transverse fractures, and consequently the expected performance of the horizontal well. Stress-shadow effects, related to the mechanical interference induced by a proppant-filled fracture, can cause fractures initiated from a horizontal well to deviate toward or away from previous fractures. A three-dimensional geomechanical model of the combined stress interference from multiple transverse fractures has been applied to typical wells in three shale gas reservoirs: Bakken, Barnett and Eagle Ford. The existence of an optimum spacing is demonstrated, where fracture stages remain transverse even when subject to stress-shadow effects. Below the optimum spacing, induced fractures may intersect previous fractures, and re-stimulate previously fractured regions of the reservoir, while leaving undrained portions of the reservoir un-stimulated. Such behavior is highly dependent on the mechanical properties of the shale, in particular the Young’s modulus. Our modeling results suggest that the net fracturing pressure data measured in the field reflects the propagation direction of the fractures induced from the horizontal wellbore. A monotonic increase in net pressure, going from one stage to another, would indicate transverse fracture propagation during all stages. On the other hand, an up-and-down trend in the net pressure data is an indication that the mechanical stress interference is causing the later stage fractures to intersect fractures from previous stages. The net pressure data can, therefore, be used to investigate fracture-to-fracture interference and can be used to optimize the spacing of fracture stages in horizontal completions.

Publisher

SPE

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3