Prediction of the Continuous Probability of Sand Screenout Based on a Deep Learning Workflow

Author:

Hou Lei1,Cheng Yiyan2,Elsworth Derek3,Liu Honglei4,Ren Jianhua2

Affiliation:

1. The University of Warwick (Corresponding author)

2. East China Company of SINOPEC

3. Pennsylvania State University

4. SINOPEC Research Institute of Petroleum Engineering

Abstract

Summary Sand screenout is one of the most serious and frequent challenges that threaten the efficiency and safety of hydraulic fracturing. Current low prices of oil/gas drive operators to control costs by using lower viscosity and lesser volumes of fluid for proppant injection—thus reducing the sand-carrying capacity in the treatment and increasing the risk of screenout. Current analyses predict screenout as isolated incidents based on the interpretation of pressure or proppant accumulation. We propose a method for continuous evaluation and prediction of screenout by combining data-driven methods with field measurements recovered during shale gas fracturing. The screenout probability is updated, redefined, and used to label the original data. Three determining elements of screenout are proposed, based on which four indicators are generated for training a deep learning model [gated recurrent units (GRU), tuned by the grid search and walk-forward validation]. Training field records following screenout are manually trimmed to force the machine learning algorithm to focus on the prescreenout data, which then improves the prediction of the continuous probability of screenout. The Pearson coefficients are analyzed in the STATA software to remove obfuscating parameters from the model inputs. The extracted indicators are optimized, via a forward selection strategy, by their contributions to the prediction according to the confusion matrix and root mean squared error (RMSE). By optimizing the inputs, the probability of screenout is accurately predicted in the testing cases, as well as the precursory predictors, recovered from the probability evolution prior to screenout. The effect of pump rate on screenout probability is analyzed, defining a U-shaped correlation and suggesting a safest-fracturing pump rate (SFPR) under both low- and high-stress conditions. The probability of screenout and the SFPR, together, allow continuous monitoring in real time during fracturing operations and the provision of appropriate screenout mitigation strategies.

Publisher

Society of Petroleum Engineers (SPE)

Subject

Geotechnical Engineering and Engineering Geology,Energy Engineering and Power Technology

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3