1. Time series predicting of COVID-19 based on deep learning
2. Integrated analysis of pressure response using pressure-rate convolution and deconvolution techniques for varied flow rate production in fractured formations
3. Ben, Y., M. Perrotte, M. Ezzatabadipour, I. Ali, S. Sankaran, C. Harlin, and D. Cao. 2020. Real-time hydraulic fracturing pressure prediction with machine learning. Paper presented at the SPE Hydraulic Fracturing Technology Conference and Exhibition, The Woodlands, Texas, USA. doi:10.2118/199699-MS.
4. Creps Merl J.2018. A Supervised Machine Learning Approach Using Object-Oriented Programming Principles. The University of Toledo MAI 58/03M(E) Masters Abstracts International .
5. Di Vaira, N. J., Ł. Łaniewski-Wołłk, R. L. Johnson, Jr., S. M. Aminossadati, and C. R. Leonardi. 2021. A novel methodology for predicting micro-proppant screenout in hydraulic fracturing treatments. Paper presented at the Asia Pacific Unconventional Resources Technology Conference 2021. doi:10.15530/AP-URTEC-2021-208342.