Modeling of Fracture Width and Conductivity in Channel Fracturing With Nonlinear Proppant-Pillar Deformation

Author:

Zhu Haiyan1,Zhao Ya-Pu2,Feng Yongcun3,Wang Haowei4,Zhang Liaoyuan5,McLennan John D.6

Affiliation:

1. Chengdu University of Technology, State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, and Institute of Mechanics, Chinese Academy of Sciences

2. Institute of Mechanics, Chinese Academy of Sciences and University of Chinese Academy of Sciences

3. University of Texas at Austin

4. Southwest Petroleum University

5. Sinopec Shengli Oilfield Company

6. University of Utah

Abstract

Summary Channel fracturing acknowledges that there will be local concentrations of proppant that generate high-conductivity channel networks within a hydraulic fracture. These concentrations of proppant form pillars that maintain aperture. The mechanical properties of these proppant pillars and the reservoir rock are important factors affecting conductivity. In this paper, the nonlinear stress/strain relationship of proppant pillars is first determined using experimental results. A predictive model for fracture width and conductivity is developed when unpropped, highly conductive channels are generated during the stimulation. This model considers the combined effects of pillar and fracture-surface deformation, as well as proppant embedment. The influence of the geomechanical parameters related to the formation and the operational parameters of the stimulation are analyzed using the proposed model. The results of this work indicate the following: Proppant pillars clearly exhibit compaction in response to applied closure stress, and the resulting axial and radial deformation should not be ignored in the prediction of fracture conductivity. There is an optimal ratio (approximately 0.6 to 0.7) of pillar diameter to pillar distance that results in a maximum hydraulic conductivity regardless of pillar diameter. The critical ratio of rock modulus to closure stress currently used in the industry to evaluate the applicability of a channel-fracturing technique is quite conservative. The operational parameters of fracturing jobs should also be considered in the evaluation.

Publisher

Society of Petroleum Engineers (SPE)

Subject

Geotechnical Engineering and Engineering Geology,Energy Engineering and Power Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3