Experimental Investigation on Separation Behavior of Heavy-Oil Emulsion for Polymer Flooding on Alaska North Slope

Author:

Chang Hongli1,Zhang Yin1,Dandekar Abhijit1,Ning Samson2,Barnes John3,Edwards Reid3,Schulpen Walbert3,Cercone David P.4,Ciferno Jared4

Affiliation:

1. University of Alaska Fairbanks

2. Reservoir Experts, LLC/Hilcorp Alaska, LLC

3. Hilcorp Alaska, LLC

4. DOE—National Energy Technology Laboratory

Abstract

Summary The first-ever field pilot on Alaska North Slope (ANS) to validate using polymer floods for heavy-oil enhanced oil recovery is currently ongoing. One of the major concerns of the operator is the effect of polymer on oil/water-separation efficiency after polymer breakthrough. This work investigates the influence of polymer on the separation behavior of heavy-oil emulsions and evaluates the performance of emulsion breakers (EBs). In this study, two types of heavy-oil emulsions were prepared and tested at 20 and 50% water cut (WC), respectively. The bottle test method was used in the experiments, in which the separated water volume with time, the separated water quality, and the volume fraction of phases were recorded. Results showed that polymer accelerated the oil/water separation acting as an emulsion inhibitor at 20% WC but tended to impede the water separation at 50% WC. Regardless of WC, polymer resulted in poor water quality and the formation of a stable intermediate oil in water (o/w) emulsion, because of the increased viscosity of the water phase. The performance of EBs showed a complex dependency on the WC, the type of demulsifier and dosage, and the polymer concentration. Despite the varied conditions encountered in the heavy-oil/water/polymer/demulsifier system, a compound EB achieved satisfactory demulsification performance, showing the highest potential for deployment in the current ANS polymer flooding pilot. In this paper, we systematically studied the potential influence of polymer breakthrough on the separation behavior of heavy-oil emulsion on ANS for the first time. The findings of this study will provide practical guidance in advance for produced fluid treatment of the ongoing first-ever polymer flooding pilot on ANS.

Publisher

Society of Petroleum Engineers (SPE)

Subject

Energy Engineering and Power Technology,Fuel Technology

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3