Screening of Topside Challenges Related to Polymer Presence in the Back Produced Fluids – Casabe Case Study

Author:

Mouret Aurélie1,Blazquez-Egea Christian1,Hénaut Isabelle1,Jermann Cyril1,Salaün Mathieu2,Quintero Henderson3,Gutierrez Mauricio3,Acosta Tito3,Jimenez Robinson3,Vargas Nadine3

Affiliation:

1. IFP Energies Nouvelles

2. Solvay

3. Ecopetrol

Abstract

Abstract Polymer enhanced oil recovery (EOR) pilots were implemented in various mature oilfield reservoirs in Colombia with encouraging results. That chemical EOR technology is often considered as a promising process to faster recover oil. To increase the chance of success of such an industrial project it is important not to neglect the potential impact of residual polymer in back produced effluents. The objective of this work is to highlight the impact of back-produced EOR polymer at the laboratory scale on various topside equipment before deploying the polymer injection at wider scale in a heavy oil field (18° API). A topside facility review was first performed to collect operational conditions and parameters, to identify applied treatment technologies and to define relevant sampling locations for the laboratory study. The impact of the residual acrylamide/ATBS ter-polymer selected for the future polymer implementation was then explored in a set of experiments as part of a dedicated laboratory workflow representing the whole surface treatment chain. The scope of the study has covered primary separation, static gravity water clarifying, deep-bed filtration and heater fouling. Large residual polymer concentration and water cut ranges were investigated to anticipate some produced fluid composition change over time. In the case studied, the selected polymer does not stabilize tight water-in-oil emulsions, but it has a negative impact on the water quality. Some compatibility issues are observed with incumbent demulsifiers, which seems to be sensitive to both polymer concentration and water cut. The fouling risk of heat exchanger is very low in the testing conditions. In the water de-oiling side, filtration and gravity settling performance are reduced but the right chemical and equipment combination enables to obtain a better water quality and to meet injection specifications targets. Novel/Additive Information: This work illustrates that management of produced fluid containing EOR polymer has to be considered as early as possible in the project implementation. It also points out that laboratory experiments are useful to better appraise and mitigate the potential operational issues. All the results obtained in such a study are valuable guideline and input data for treatment facilities upgrade studies. In polymer flooding roadmap implementation, it is key to bond operational conditions and laboratory parameters in order to be as close as possible to the field conditions as each case is unique.

Publisher

SPE

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3