Analysis of Production Data from Fractured Shale Gas Wells

Author:

Anderson D. M.1,Nobakht M..1,Moghadam S..1,Mattar L..1

Affiliation:

1. Fekete Associates Inc.

Abstract

Abstract Long-term shale gas well performance characteristics are generally not well understood. The ultra-low permeability of shale ensures the continuing presence of pressure transient effects during well production. This makes production forecasting a difficult and non-unique exercise. Conventional methods have proven to be too pessimistic, in many cases, because they assume a depletion-dominated system. Recently, more suitable forecasting methods have been developed that account for long-term transient effects. These methods incorporate a transient model (usually linear flow) which transitions into a conventional boundary-dominated flow model after a prescribed time or upon achieving a certain region of investigation. The underlying concept assumes that once a transition to boundary-dominated flow is observed, depletion will dominate the production going forward. Although this methodology has been successfully applied for a variety of tight gas reservoirs, it may not be the right model for fractured shale gas (and some conventional tight gas) reservoirs. Fractured shale gas reservoirs get their productivity from the stimulated reservoir volume (SRV), which may be quite limited in areal extent but is surrounded by a low-permeability reservoir (matrix). Thus, the mechanism for long-term production includes a late-time transition from depletion of the SRV, back to infinite acting (linear or pseudo-radial) flow. This "return" to infinite acting flow may or may not provide contribution to recoverable reserves within a practical time-frame, but it should be considered nonetheless. In this paper we present a straight forward methodology for determining the major well performance characteristics of fractured horizontal shale gas wells, considering the impact of uncertainty and non-uniqueness. The focus will be on determining the dominant flow regimes and bulk properties from the data, and then defining a suitable, simple reservoir model for production forecasting, using practical experience and all available information. Field examples from the Barnett, Marcellus, and Haynesville shales are included.

Publisher

SPE

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3