Asphaltene Thermodynamic Flocculation during Immiscible Nitrogen Gas Injection

Author:

Elturki Mukhtar1,Imqam Abdulmohsin2

Affiliation:

1. Missouri University of Science and Technology

2. Missouri University of Science and Technology (Corresponding author; email: aimqam@mst.edu)

Abstract

Summary Gas-enhanced oil recovery is one of the most advantageous enhanced oil recovery methods. Nitrogen is one of the most investigated gases because of its beneficial properties. However, during its interaction with crude oil, nitrogen can induce asphaltene deposition, which may result in severe formation damage and pore plugging. Few works have investigated the impact of nitrogen on asphaltene instability. This research studied the immiscibility conditions for nitrogen in nanopores and the impact of nitrogen on asphaltene precipitations, which could lead to plugging pores and oil recovery reduction. A slimtube was used to determine the minimum miscibility pressure (MMP) of nitrogen to ensure that all the experiments would be carried out below the MMP. Then, filtration experiments were conducted using nanofilter membranes to highlight the impact of the asphaltene particles on the pores of the membranes. A special filtration vessel was designed and used to accommodate the filter paper membranes. Various factors were investigated, including nitrogen injection pressure, temperature, nitrogen mixing time, and pore size heterogeneity. Supercritical phase nitrogen was used during all filtration experiments. Visualization tests were implemented to observe the asphaltene precipitation and deposition mechanism over time. Increasing the nitrogen injection pressure resulted in an increase in the asphaltene weight percent in all experiments. Decreasing the pore size of the filter membranes resulted in an increase in the asphaltene weight percent. Greater asphaltene weight percents were observed with a longer nitrogen mixing time. Visualization tests revealed that asphaltene clusters started to form after 1 hour and fully deposited after 12 hours in the bottom of the test tubes. Chromatography analysis of the produced oil confirmed that there was a reduction in the heavy components and asphaltene weight percent. Microscopy and scanning electron microscopy (SEM) imaging of the filter paper membranes found that significant pore plugging resulted from asphaltene deposition and precipitation. This research investigated asphaltene precipitation and deposition during immiscible nitrogen injection to understand the main factors that impact the success of using such a technique in unconventional shale reservoirs.

Publisher

Society of Petroleum Engineers (SPE)

Subject

Geotechnical Engineering and Engineering Geology,Energy Engineering and Power Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3