An Experimental Investigation of Asphaltene Aggregation Under Carbon Dioxide Injection Flow in Ultra-Low-Permeability Pore Structure

Author:

Elturki Mukhtar1,Imqam Abdulmohsin1

Affiliation:

1. Missouri University of Science and Technology, USA

Abstract

Abstract One of the major problems during gas injection in unconventional reservoirs is asphaltene precipitation and deposition. Asphaltenes can reduce the pore throat in the reservoir and plug the surface and subsurface equipment during the production process, thus, result in oil production reduction with significant financial consequences. The impact of carbon dioxide (CO2) gas injection on asphaltene deposition in unconventional reservoirs still poorly investigated. This research investigates the impact of CO2 gas injection on asphaltene aggregation in ultra-low-permeability pore structures, mainly present in unconventional shale resources. First, the minimum miscibility pressure (MMP) of crude oil with CO2 was determined using the slim tube technique. Then, several CO2 injection pressures were selected to conduct the filtration experiments using a specially designed filtration apparatus. All pressures selected were below the MMP. Various sizes of filter paper membranes were used to study the effect of pore structure on asphaltene deposition. The results showed that asphaltene weight percent was increased by increasing the pressure and a significant asphaltene weight percentage was observed on smaller pore size structures of the filter membranes. The visualization tests revealed the process of asphaltene precipitation and deposition and showed that asphaltene particles and clusters were precipitated after one hour and fully deposited in the bottom of the test tube after 12 hours. High-resolution photos of filter paper membranes were presented using microscopy imaging and scanning electron microscopy (SEM) analysis; these photos highlighted the asphaltene particles inside the filter paper membranes and pore plugging was observed. The study's findings will contribute to a better understanding of the main factors influencing the stability of asphaltene particles in crude oil under immiscible CO2 injection pressure, particularly in nano pores, which are predominant in shale unconventional resources.

Publisher

SPE

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3