Unconventional Production Forecast Needs Integration of Field Hydraulic Stimulation Data Through Fracture Model Calibration and Optimized Numerical Scheme

Author:

Delorme M..1,Bossie-Codreanu D..1,Ben-Gharbia I..1,Khebzegga O..1,Khebzegga N..1,Ricois O. M.1

Affiliation:

1. IFP Energies Nouvelles

Abstract

Abstract Objectives/Scope Hydraulic fracturing is today a standard when developing unconventional reservoir plays. This is studied through different models, based on a great deal of characterization data gathering and analysis. Unfortunately, numerical limitations impose drastic simplifications (number of fractures, some data being ignored…) leading to simple fracture geometries, lacking observed complexity. This limits any design optimization expectation. Our objective is to show that calibration data used for simpler models, along microseismic measurements, can lead to more realistic hydraulic fracturing geometries. Results can be linked to a reservoir platform, forecasting production. The presented computationally efficient method, within which sensitivity is performed, highlights key parameters governing the stimulation process. This study shows that the tool used is tailored for practical scenario design and evaluation. Methods, Procedures, Process The method used to generate realistic fracture geometries implies information at all scales (seismic, log, cores…) as well as numerical tools able to handle geomechanics and fluid flow, over a great number of fractures (as required by the characterization). Thus all data is input into one 3D Representative Deformable Discrete Fracture Network (DDFN), simulating the hydraulic stimulation. Characterization is based on geostatistical concepts applied to both natural and hydraulically induced fractures, driven by geological and geomechanical data. The process is simulated using a one phase hydrodynamic model within the DDFN (specific discretization) under far stress conditions. Fractures behavior is governed by geomechanical laws, reversible and non-reversible, with an approximate proppant model. Various scenarios are tested according to either geomechanical uncertain parameters, or characterization ones. Observed in-situ Bottom Hole Pressure (BHP) and microseismic characteristics (shape, frequency…) are then history-matched. Results, Observations, Conclusions For each simulated scenario, quality of the history match is shown and discussed, stressing the representativity of the data involved. The method has shown to be computationally efficient and robust enough to support hundred thousands of fractures while at the same time being able to simulate simpler cases. Also, within the studied framework, ties with already existing reservoir platform are shown. Advantages of such an approach are highlighted including current limitations of classical reservoir models. Novel/Additive Information This work undergone at different scales demonstrate the new possibilities of computational robust algorithms, within an approach considering both geological settings and geomechanical properties. The model offers the possibility to integrate several scales to an adaptive discretization scheme.

Publisher

SPE

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3