An Integrated Modeling Framework for Simulating Complex Transient Flow in Fractured Reservoirs with 3D High-Quality Grids

Author:

Liu Hui1,Liao Xinwei1,Lie Knut-Andreas2,Klemetsdal øystein2,Bao Kai2,Zhao Xiaoliang1,Johansson August2,Raynaud Xavier2

Affiliation:

1. China University of Petroleum Beijing

2. SINTEF Digital

Abstract

AbstractModeling near-well transient flow with complex 3D fracture networks poses several challenges: the multiscale nature (millimeters to kilometers), long and deviating well trajectories, intricate fracture networks with fracture-fracture and fracture-well intersections, and high level of reservoir heterogeneities. We address these difficulties by proposing a comprehensive methodology for meshing, discretizing, and simulating transient flow in complex 3D fracture networks based on discrete fracture-matrix models.Our framework consists of three parts: (i) Given deviating wells and planar or nonplanar fractures and faults, we construct highquality 3D grids conforming to wells, hydraulic fractures, faults, and dominating natural fractures. We ensure sufficient mesh quality near important features using transfinite interpolation near wells and hydraulic fractures, combined with adaptive refinement in regions of interest. (ii) With the generated grid, we discretize the governing equations with a fully implicit finite- volume formulation with an inner-boundary well model and discrete fracture model. (iii) Finally, we analyze the results using suitable visualization tools, both for pressure-transient curves and 3D matrix/fracture data.The framework enables high-resolution numerical modeling of transient flow with complex fracture networks in 3D. We demonstrate the capacities through simple validation cases with comparisons against an industry-standard commercial well-testing software but also present highly complex cases with long and deviating well trajectories and highly detailed fracture networks. We present and analyze flow-transient behavior coupling the wellbore, the fracture network, and the matrix. We also present an approach to reliably diagnose complex multiple flow regimes on the pressure-transient curves combined with different-scale spatial pressure distribution. Comparison against the commercial software indicates that our framework does not introduce adverse grid-orientation effects for non-K-orthogonal grids which is able to robustly handle the details for fracture-network heterogeneities in 3D reservoirs.Overall, our framework is robust for simulating and analyzing realistic second-level transient effects and short-term well performance with complex fracture networks and heterogeneities. Detailed description of the 3D fracture networks, and accurate simulation of the near-well transient flow behavior can be achieved, which provides confidence to interpret the dynamic flow data at different scales and observe transport mechanisms in unconventional fractured reservoirs with multiple levels of heterogeneity.

Publisher

SPE

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3