Affiliation:
1. Shell Global Solutions International
Abstract
Abstract
Improved oil recovery by low salinity waterflooding (LSF) represents an attractive emerging oil recovery technology, as it is relatively easy to implement and low-cost compared to other Improved and Enhanced Oil Recovery (IOR and EOR, respectively) processes. Even though LSF leads to extra oil recovery in most laboratory experiments and some promising data from the field have been presented, the mechanism underlying LSF is still unclear. Therefore it is difficult to predict a favorable performance of LSF in one field a priori, while dismissing others.
This paper describes a series of spontaneous imbibition experiments on Berea outcrop core plugs, and some reservoir rock core plugs, that were designed to determine the impact of formation water, imbibing water and crude oil composition on wettability and on wettability modification by LSF. The data presented in this paper lead us to conclude that: Spontaneous imbibition experiments with formation brine and low salinity brine executed on Berea outcrop material aged with a crude oil show excellent reproducibility;An increasing concentration of divalent cations in the formation brine makes a Crude Oil/Brine/Rock system more oil-wet;The extent of wettability modification towards more oil-wet upon aging also depends on the types of cations in the formation brine;Improved oil recovery by exposure of the aged plugs to NaCl brines occurred when the imbibing phase was either higher or lower in salinity than the formation brine;Aging of the same brine/rock system with different crudes having diverse physico-chemical properties led to:○A spread in wettabilities after aging○A crude oil-dependent low salinity effect
These results are discussed within the context of several mechanisms that have been put forward previously as an explanation for the low salinity effect.
Cited by
40 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献