Understanding & Screening of DCW through Application of Data Analysis of Experiments and ML/AI

Author:

Thomas Tony1ORCID,Sharma Pushpa1ORCID,Gupta Dharmendra Kumar1

Affiliation:

1. Department of Petroleum Engineering and Earth Sciences, University of Petroleum and Energy Studies, Bidholi Campus, Dehradun 248 007, India

Abstract

An oil recovery technique, different composition waterflooding (DCW), dependent on the varying injected water composition has been the subject of various research work in the past decades. Research work has been carried out at the lab, well and field scale whereby the introduction of different injection water composition vis-a-vis the connate water is seen to bring about improvements in the oil recovery (improvements in both macroscopic and microscopic recoveries) based on the chemical reactions, while being sustainable from ease of implementation and reduced carbon footprint points of view. Although extensive research has been conducted, the main chemical mechanisms behind the oil recovery are not yet concluded upon. This research work performs a data analysis of the various experiments, identifies gaps in existing experimentation and proposes a comprehensive experimentation measurement reporting at the system, rock, brine and oil levels that leads to enhanced understanding of the underlying recovery mechanisms and their associated parameters. Secondly, a sustainable approach of implementing Machine Learning (ML) and Artificial Intelligence Tools (AIT) is proposed and implemented which aids in improving the screening of the value added from this DCW recovery. Two primary interaction mechanisms are identified as part of this research, gaps in current experimentation are identified with recommendations on what other parameters need to be measured and finally the accuracy of application of ML/AI tools is demonstrated. This work also provides for efficient and fast screening before application of more resource and cost intensive modeling of the subsurface earth system. Improved understanding, knowledge and screening enables making better decisions in implementation of DCW, which is a sustainable recovery option given the current state of affairs with zero carbon and net zero initiatives being on the rise.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3