Characterization and Quantification of the CO2 Sequestration Potential of a Carbonate Aquifer in Falaha Syncline, Onshore Abu Dhabi

Author:

Temitope Ajayi1,Gomes Jorge S.1,Al Kobaisi Mohammed1,Hu Jialiang2

Affiliation:

1. The Petroleum Institute

2. ADNOC

Abstract

Abstract The capacity for the storage of carbon dioxide in saline aquifers remains enormous. Of all geological storage media, it provides the best storage capacity. In this study, the potential of the Shuaiba Formation, in the Falaha syncline, for geologic sequestration is assessed. A regional geo-model was built using seismic and well data (logs, cores) from the Falaha Syncline and nearby fields. The model was built to honor the heterogeneity and sequence stratigraphy of the Shuaiba carbonate platform using a five-order hierarchical conceptual model of the Shuaiba formation that merged sequence architecture and reservoir architecture together. This was achieved by honoring lithofacies, facies association packages and rock types in their corresponding depositional settings in the sequence framework. Dynamic simulations were then conducted on an upscaled geological model using a compositional reservoir simulator to determine its storage and flow capacity, plume migration pathways and to understand the physics of the fluid flow in the aquifer. Simulations are made to be conservative thus accounting for structural/stratigraphic, solubility (dissolution in resident brine) and residual trapping without accounting for the slower mineral trapping process. Detailed sensitivity studies were conducted during the simulations to understand the effect of well parameters, rock and fluid properties amongst others on the storage capacity in the aquifer. Simulation results indicate that significant volumes could be stored in the aquifer and could take a significant amount of time before the injected gas reaches the surrounding hydrocarbon producing fields. This study provides the first full field approach to characterize and to quantify the suitability of the identified aquifer for long term storage of carbon dioxide in the subsurface of UAE.

Publisher

SPE

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3