Uncertainty Analysis of CO2 Storage in Deep Saline Aquifers Using Machine Learning and Bayesian Optimization

Author:

Alqahtani Abdulwahab1,He Xupeng1ORCID,Yan Bicheng1ORCID,Hoteit Hussein1ORCID

Affiliation:

1. Physical Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal 23955, Saudi Arabia

Abstract

Geological CO2 sequestration (GCS) has been proposed as an effective approach to mitigate carbon emissions in the atmosphere. Uncertainty and sensitivity analysis of the fate of CO2 dynamics and storage are essential aspects of large-scale reservoir simulations. This work presents a rigorous machine learning-assisted (ML) workflow for the uncertainty and global sensitivity analysis of CO2 storage prediction in deep saline aquifers. The proposed workflow comprises three main steps: The first step concerns dataset generation, in which we identify the uncertainty parameters impacting CO2 flow and transport and then determine their corresponding ranges and distributions. The training data samples are generated by combining the Latin Hypercube Sampling (LHS) technique with high-resolution simulations. The second step involves ML model development based on a data-driven ML model, which is generated to map the nonlinear relationship between the input parameters and corresponding output interests from the previous step. We show that using Bayesian optimization significantly accelerates the tuning process of hyper-parameters, which is vastly superior to a traditional trial–error analysis. In the third step, uncertainty and global sensitivity analysis are performed using Monte Carlo simulations applied to the optimized surrogate. This step is performed to explore the time-dependent uncertainty propagation of model outputs. The key uncertainty parameters are then identified by calculating the Sobol indices based on the global sensitivity analysis. The proposed workflow is accurate and efficient and could be readily implemented in field-scale CO2 sequestration in deep saline aquifers.

Funder

King Abdullah University of Science and Technology

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Reference63 articles.

1. IPCC (2021). Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press. in press.

2. Atmospheric carbon dioxide variations at Mauna Loa Observatory, Hawaii;Keeling;Tellus,1976

3. Metz, B., Davidson, O., de Coninck, H.C., Loos, M., and Meyer, L. (2005). IPCC Special Report on Carbon Dioxide Capture and Storage, Cambridge University Press.

4. The Paris Agreement and next steps in limiting global warming;Rose;Clim. Chang.,2017

5. Hoteit, H., Fahs, M., and Soltanian, M.R. (2019). Assessment of CO2 Injectivity during Sequestration in Depleted Gas Reservoirs. Geosciences, 9.

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3