Shallow Light Architecture: A Viable and Cost-Effective Solution for Marginal Reserves in Tunu Shallow Development

Author:

Handoko A. I.1,Bimastianto P..1,Maulana M. D.1,Agriawan C..1,Brahmantio R. A.1,Abidiy I..1,Setiawan T..1

Affiliation:

1. Total E&P Indonesie

Abstract

Abstract The current development of Tunu field level has reached a mature level. Finding target for new wells with adequate reserves to pass the economic cut-off limit has been a challenging task. In addition, with the recent low gas price environment, completing these marginal wells using currently proven Gravel Pack (GP) well design makes these wells uneconomical. Answering the challenge, and with alignment to cost culture program, Total E&P Indonesie launched a collaborative project aiming for cost-effective wells against well reserves. Shallow Light Architecture (SLA) well design was introduced as the outcome of well architecture simplification process. For sand control, a successful period of trials of chemically-enhanced sand consolidation has boosted the confidence to implement sand consolidation on the industrialization phase as primary sand control in SLA wells. This paper aims to describe a brief development of the technology, implementation, and results for the operator.

Publisher

SPE

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3