Evaluation of After-Closure Analysis Techniques for Tight and Shale Gas Formations

Author:

Mohamed I. M.1,Nasralla R. A.1,Sayed M. A.1,Marongiu-Porcu M..1,Ehlig-Economides C. A.1

Affiliation:

1. Texas A&M University

Abstract

Abstract Optimized hydraulic fracture design requires formation permeability as an input, but it is difficult to quantify in tight gas and shale gas reservoirs. After closure analysis (ACA) following a minifrac or fracture calibration test may offer a means to determine the formation permeability in cases for which both a formation test and a conventional pressure buildup test are impractical and/or unable to provide the permeability. However, ACA techniques use a variety of specialized plots, and there is a risk that apparent straight lines may lead to erroneous results. This paper proposes a technique that provides a simple way to calculate formation permeability, initial reservoir pressure, fracture length, and closure pressure from a single specialized plot. The proposed technique is compared with the G-function method for the estimation of the closure pressure. In addition, it is compared with 3 ACA techniques (Benelkadi, Gu, and G-Function) used in the literature to calculate formation permeability for tight gas and shale gas wells. Three field examples of pressure fall-off tests (in tight sand gas wells and shale gas well) are analyzed. The results show that the proposed technique provides a clear and rigorous analysis procedure for determination of permeability and other parameters required for the hydraulic fracture design. This proposed technique uses only a single plot comparing to the multiple plots required by the other techniques.

Publisher

SPE

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3