Extension and Verification of a Simple Model for Vertical Sweep in Foam Surfactant-Alternating-Gas Displacements

Author:

de Velde Harsenhorst R.M.. M.1,Dharma A.S.. S.1,Andrianov A..2,Rossen W.R.. R.1

Affiliation:

1. Delft University of Technology

2. Shell Global Solutions International (currently with Eni E&P)

Abstract

Summary Foam is a promising method to improve sweep in gas-injection enhanced-oil-recovery (EOR) projects. For cases in which well-to-well distances are large, the question arises whether foam can prevent gravity segregation over these distances. For such cases, theoretical studies suggest that the best process is to inject one large slug of surfactant followed by one large slug of gas. Shan and Rossen (2004) present a simple model for such a process that provides an initial assessment whether foam can prevent segregation over large distances. They did not extend their calculations to the large distances between wells in some potential applications, and they treated only the case in which vertical permeability kv equals horizontal permeability kh. Here, we extend the model to cases of kv < kh. We derive an analytical solution for the limit as kv approaches zero, which could serve as a quick first estimate of feasibility for other cases. Surprisingly, the model predicts that gravity segregation is worse as kv decreases; the reason is that, with large kv, foam pushes downward in response to the pressure difference across the tilted foam front. We illustrate the use of the model with an example from a North Sea field, in which the issue was whether foam could prevent gravity segregation over a distance of several kilometers. The simple model said this was feasible, and more-detailed 2D cross-section simulation then confirmed that segregation was insignificant over an interwell distance of 6 km. One can fit the model parameters to foam parameters derived directly from laboratory data. We illustrate with a model fit by Rossen and Boeije (2013) to data of Persoff et al. (1991), a fit specifically designed for a hypothetical surfactant-alternating-gas (SAG) application. The fit of simulations to the simple model is closer than in the North Sea example, and the prediction that sweep is better with kv = kh than for kv = 0 is confirmed. Moreover, the idealized model predicts the injectivity in this case very accurately.

Publisher

Society of Petroleum Engineers (SPE)

Subject

Geology,Energy Engineering and Power Technology,Fuel Technology

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Foam Propagation with Flow Reversal;Transport in Porous Media;2023-03-14

2. Breakdown of similarity solutions: a perturbation approach for front propagation during foam-improved oil recovery;Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences;2021-01

3. Modelling foam improved oil recovery: towards a formulation of pressure-driven growth with flow reversal;Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences;2020-12

4. Foam–liquid front motion in Eulerian coordinates;Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences;2018-12

5. Pressure-driven growth in strongly heterogeneous systems;The European Physical Journal E;2018-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3