Breakdown of similarity solutions: a perturbation approach for front propagation during foam-improved oil recovery

Author:

Torres-Ulloa Carlos12ORCID,Grassia Paul1ORCID

Affiliation:

1. Department of Chemical and Process Engineering, University of Strathclyde, James Weir Building, 75 Montrose Street, Glasgow G1 1XJ, UK

2. Departamento de Procesos Industriales, Facultad de Ingeniería, Universidad Católica de Temuco, Av. Rudecindo Ortega 02950, Temuco, Chile

Abstract

The pressure-driven growth model has been employed to study a propagating foam front in the foam-improved oil recovery process. A first-order solution of the model proves the existence of a concave corner on the front, which initially migrates downwards at a well defined speed that differs from the speed of front material points. At later times, however, it remains unclear how the concave corner moves and interacts with points on the front either side of it, specifically whether material points are extracted from the corner or consumed by it. To address these questions, a second-order solution is proposed, perturbing the aforementioned first-order solution. However, the perturbation is challenging to develop, owing to the nature of the first-order solution, which is a similarity solution that exhibits strong spatio-temporal non-uniformities. The second-order solution indicates that the corner’s vertical velocity component decreases as the front migrates and that points initially extracted from the front are subsequently consumed by it. Overall, the perturbation approach developed herein demonstrates how early-time similarity solutions exhibiting strong spatio-temporal non-uniformities break down as time proceeds.

Publisher

The Royal Society

Subject

General Physics and Astronomy,General Engineering,General Mathematics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Foam Propagation with Flow Reversal;Transport in Porous Media;2023-03-14

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3