Real-Time Evaluation of Hole-Cleaning Conditions With a Transient Cuttings-Transport Model

Author:

Cayeux E..1,Mesagan T..2,Tanripada S..2,Zidan M..2,Fjelde K.K.. K.3

Affiliation:

1. IRIS

2. Statoil

3. University of Stavanger

Abstract

Summary During a drilling operation, a real-time analysis of surface and downhole measurements can give indications of poor hole cleaning. However, it is not always intuitive to understand how and where the cuttings are settling in the borehole because the transportation of cuttings and the formation of cuttings beds are largely influenced by the series of actions performed during the operation. With a transient cuttings-transport model, it is possible to get a continuously updated prognosis of the distribution of cuttings in suspension and in beds along the annulus. This information can be of prime importance for making decisions to deal with and prevent poor hole-cleaning conditions. A transient cuttings-transport model has been obtained by integrating closure laws for cuttings transport into a transient drilling model that accounts for both fluid transport and drillstring mechanics. This paper presents how this model was used to monitor two different drilling operations in the North Sea: one using conventional drilling and one using managed-pressure drilling (MPD). Some unknown parameters within the model (e.g., the size of the cuttings particles) were calibrated to obtain a better match with the top-side measurements (cuttings-flow rate, active pit reduction as a result of cuttings removal). With the calibrated model, the prediction of cuttings-bed locations was confirmed by actual drilling incidents such as packoffs and overpulls while tripping out of hole. On the basis of the calibrated transient cuttings-transport model, it is thereby possible to evaluate the adjustments of the drilling parameters that are necessary to stop and possibly remove the cuttings beds, thus giving the drilling team the opportunity to take remedial and preventive actions on the basis of quantitative evaluations, rather than solely on the intuition and experience of the decision makers.

Publisher

Society of Petroleum Engineers (SPE)

Subject

Mechanical Engineering,Energy Engineering and Power Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3