Simultaneous Injection of Miscible Gas and Polymer (SIMGAP) to Improve Oil Recovery and Sweep Efficiency from Layered Carbonate Reservoirs

Author:

Masalmeh Shehadeh K.1,Hillgartner H..1,Al Mjeni R..1,Jing X. D.1

Affiliation:

1. Shell Technology Oman

Abstract

Abstract This paper presents a method for improving oil recovery from heterogeneous mixed to oil-wet carbonate reservoirs. In reservoirs where a high-permeability zone is above a low permeability zone, under water flooding the injected water tends to flow through the upper zone along the high permeability layers with no or very slow cross flow of water into the lower zone, resulting in very poor sweep of the lower zone. It has been demonstrated in earlier publications that this water override phenomenon is caused by capillary forces which act as a vertical barrier and counteracts gravity force in cases where permeability varies between layers for mixed to oil-wet reservoirs. There is significant scope for improving oil recovery from such type of heterogeneous mixed to oil-wet carbonate reservoirs. Gas injection is known to improve displacement efficiency by reducing residual oil saturation. However, for reservoirs of high permeability contrast especially when the high permeable layers are in the upper part of the reservoir, conventional gas injection (immiscible or miscible) becomes less effective because of gravity override and/or viscous fingering caused by unfavourable mobility ratio compounded by geological heterogeneity. The main challenge to gas injection in such reservoirs is to confine the gas into the low permeability zones and improve sweep efficiency. Therefore, for this type of carbonate reservoirs, mobility control is required to enable gas/CO2 EOR due to the geological heterogeneity and gravity override. This paper presents a new EOR scheme where mobility control of the injected gas is achieved by injecting viscosified water into the upper zone while injecting miscible gas into the lower zone using vertical and/or horizontal wells. A key prerequisite is to have a static model that captures the geological heterogeneity (e.g., vertical permeability contrast, all prevailing rock types) and a dynamic model that incorporates the SCAL derived capillary pressure (both drainage and imbibition) and relative permeability curves. Integrated geological, petrophysical and reservoir engineering effort was devoted to this EOR program that led to history matched sector models which honours the waterflood remaining oil saturation distribution shown in cased hole time-lapse saturation logs. The model forecasts show that significant sweep of the lower zone is achieved compared to both water or gas injection and that the process is stable and robust to reservoir lateral and vertical heterogeneity. This EOR process has the potential of recovering the oil that is by-passed by waterflood or conventional gas injection schemes. It is particularly suited for layered oil reservoirs where there is an impediment for water to flow from the upper high permeable zone to the lower reservoir due to e.g. (vertical) permeability reduction at the interface or a capillary pressure barrier. It is also applicable for improving oil recovery from the low permeable layers inter-bedded within the more permeable reservoir unit. Additional benefit of this process is to potentially enable economic EOR and CO2 storage in such kind of heterogeneous reservoirs.

Publisher

SPE

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3