Assessment of World’s First Two Polymer Injectivity Tests Performed in Two Giant High-Temperature/High-Salinity Carbonate Reservoirs Using Single-Well Simulation Models and Pressure Falloff Tests Analysis

Author:

Leon J. M.1ORCID,Masalmeh S. K.2ORCID,AlSumaiti A. M.2ORCID,Baslaib M.2

Affiliation:

1. Abu Dhabi National Oil Company (Corresponding author)

2. Abu Dhabi National Oil Company

Abstract

Summary Polymer flooding is a mature enhanced oil recovery (EOR) technology that has been widely implemented around the world for more than 60 years. Polymer flooding mostly targets medium- to high-permeability sandstone reservoirs with moderate salinity, hardness, and temperatures. However, in the last few years, the envelope of polymer flooding has been expanded to harsher reservoir conditions of high-temperature and high-salinity mixed-wet to oil-wet heterogeneous carbonate reservoirs. Development of novel polymers and innovative field application concepts has allowed for the reconsideration of polymer-based EOR as a promising technology to improve sweep efficiency for these challenging reservoirs. Polymer injectivity is one of the key challenges for polymer flooding projects and requires a rigorous derisking program that includes laboratory and field testing. A comprehensive laboratory program was designed to assess and investigate polymer thermal stability, polymer rheology in porous media, adsorption, and injectivity using reservoir core samples. In addition, two polymer injectivity tests (PITs) were performed in two giant light oil (0.3 cp) carbonate reservoirs in onshore Abu Dhabi under harsh conditions of high salinity (>200 g/L), high divalent ions (>20 g/L), high temperature (>250°F), and H2S concentration of up to 40 ppm. The polymer used during the two PITs (PIT 1 2019 and PIT 2 2021) is a new generation of EOR polymer (SAV 10) with high 2-acrylamido-tertiary-butyl sulfonic acid content that was specifically developed to tolerate such harsh conditions. This paper is focused on the interpretation of the PITs and lessons learned for future polymer-based EOR projects. The detailed data acquired in both tests were used to evaluate the polymer injectivity at representative field conditions and in-depth mobility reduction. The PITs together with the extensive laboratory studies are part of a thorough derisking program for the upcoming world’s first innovative hybrid EOR multiwell pilots—simultaneous injection of miscible gas and polymer (SIMGAP) and simultaneous injection of water and polymer (SIWAP). Both PITs are composed of three stages that include a multirate waterflood baseline, polymer injection using different rates, and polymer concentrations followed by extended chase waterflooding. In addition, a sequence of multiple pressure falloff (PFO) tests was acquired during the PIT executions and analyzed to obtain the required uncertainty parameters for the history-matching exercise. Polymer preshearing was considered as part of both PIT programs with the aim to homogenize the polymer molecular weight distribution and reduce possible shear-thickening effects near the wellbore as per laboratory measurements. Two single-well 3D simulation models were built to incorporate the information from polymer laboratory studies and to interpret the large field data sets acquired during the PITs. Lessons learned from PIT 1 allowed us to optimize the PIT 2 design program and achieve better understanding of polymer characteristics. The interpretation of the pressure transient analysis (PTA) of the PFO tests and the 3D simulation models of the two PITs confirmed the generation of polymer banks and demonstrated effective propagation of the polymer into the reservoirs at target concentrations and representative rates of the future SIWAP and SIMGAP interwell pilots.

Publisher

Society of Petroleum Engineers (SPE)

Reference17 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3