Optimal Injection Policies for Enhanced Oil Recovery: Part 2-Surfactant Flooding

Author:

Fathi Zohreh1,Ramirez Fred W.1

Affiliation:

1. U. of Colorado

Abstract

Abstract The optimal control theory of distributed-paranieter systems has been applied to the problem of determining the best injection policy of a surfactant slug for a tertiary oil recovery chemical flood. The optimization criterion is to maximize the amount of oil recovered while minimizing the chemical cost. A steepest-descent gradient method was used as the computational approach to the solution of this dynamic optimization problem. The performance of the algorithm was examined for the surfactant injection in a one-dimensional flooding problem. Two types of interfacial tension (IFT) behavior problem. Two types of interfacial tension (IFT) behavior were considered. These are a Type A system where the IFT is a monotonically decreasing function with solute concentration and a Type B system where a minimum IFT occurs at a nominal surfactant concentration. For a Type A system, the shape of the optimal in 'faction strategy was not unique, however, there is a unique optimum for the amount of surfactant needed. For a Type B system, the shape of the optimal injection as well as the amount injected was unique. Introduction Surfactant recovery systems are being investigated by the petroleum industry as a means of increasing the petroleum supply. Commercial application of any petroleum supply. Commercial application of any surfactant flooding process relies upon economic projections that indicate a decent return on investment. projections that indicate a decent return on investment. Previously. surfactant systems for tertiary oil recovery have been optimized by adjusting concentrations of individual components empirically. Salinity has been shown to be an important variable in surfactant system optimization. The particular choice of surfactant and cosurfactant has been studied by Salager et al. Multivariable optimization of surfactant systems based on minimizing the IFT has been studied by Vinatiere et al. As reported, such an optimization may or may not coincide with optimal oil recovery since low IFT is a necessary. but not a sufficient condition for achieving, high displacement efficiency. Chemical supply and cost are important parts of economic projections. Because of the high cost of chemicals, it is essential to optimize surfactant systems to provide the greatest oil recovery at the lowest cost. In this paper, an optimization surfactant is taken as the minimization of the chemical cost and maximization of the recovered oil. The goal is to determine the best way of injecting a surfactant slug into the reservoir formation. Mathematical Formulation of the Performance Index Performance Index We desire to obtain maximum oil recovery with a minimum amount of chemical surfactant injected. These objectives can he expressed in a quantitative form through the formulation of a cost functional. J', which is to be minimized, where J' equals the cost of surfactant injected minus the value of oil recovered. This descriptive statement of the cost functional must be translated into a mathematical form to use quantitative optimization techniques. The oil value can be formulated as (1) where C1 = cost of oil per unit volume ($251.6/m 3[$40/bbl]),= volumetric flow, rate of oil at the coreoutlet L = core length, and a = time. The chemical cost is expressed mathematically as (2) where C2 = chemical cost per unit weight ofsurfactant ($5.45 × 10–3/g [$2.47/lbm]), Cs( ) = surfactant concentration of the injectedfluid in weight fraction, P slug = slug density ( 1 g/cm 3 ). and Qw, ( ) = volumetric flow rate of water at thecore inlet. The objective functional is, therefore, (3) JPT P. 333

Publisher

Society of Petroleum Engineers (SPE)

Subject

General Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3