Horizontal Well Development in Unconventional Resource Play Using an Integrated Completion and Production Workflow: Delaware Basin Case Study

Author:

Sharma Anoop1,Yates Malcolm E.1,Pope Tim1,Fisher Kelvin2,Brown Randy2,Honeyman Les2,Bates Bradley2

Affiliation:

1. Schlumberger

2. Endeavor Energy Resources LP

Abstract

Abstract Horizontal wells give a great opportunity for maximizing the potential of unconventional resource play developments by providing enhanced reservoir contact but present multiple challenges in the process due to the heterogeneous nature of the unconventional reservoir rock. This study covers the implementation of an integrated completion and production workflow to optimize a horizontal well development project in the Delaware Basin located in Reeves County, Texas. By undertaking a vertical well pilot logging program, the acreage was evaluated for petrophysical and geomechanical properties using advanced geo-chemical and full-wave sonic tools to quantify reservoir quality (RQ) and completion quality (CQ), respectively. Detailed fracture simulations were performed at multiple depths to locate the optimum landing point that maximized reservoir contact. Incorporating the key findings of the wellbore stability analysis, the well was geo-steered using a rotary steerable system (RSS) and a logging-while drilling (LWD) resistivity tool that placed 100% of the lateral in the target zone. Further completion simulations were performed to determine a perforating and staging strategy which would optimize the number of stages. The flow-channel fracturing technique, which provides a novel approach for achieving fracture conductivity, was also implemented on the studied well to significantly improve the effectiveness of the fracture stimulation treatment. Fracture diagnostics, detailed post fracture modeling, and production analysis techniques, which utilized rate-transient analysis and history matching, were performed to provide better understanding of the effectiveness of the stimulation treatments (fracture lengths/conductivity), thereby allowing further optimization of the stimulation program. This study has demonstrated how the implementation of an integrated design and evaluation workflow can optimize the overall well production performance as well as reduce drilling and stimulation costs in unconventional resource play developments.

Publisher

SPE

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Comparison of lithological classification using PP and PP-PS results for Midland Basin;First International Meeting for Applied Geoscience & Energy Expanded Abstracts;2021-09-01

2. Twelve years of unconventional oil and gas development: production performance and economic analysis;International Journal of Energy and Environmental Engineering;2021-02-10

3. Comparative evaluation of multi-basin production performance and application of spatio-temporal models for unconventional oil and gas production prediction;Journal of Petroleum Exploration and Production Technology;2020-07-24

4. Rock physics of the Wolfcamp Formation, Delaware Basin;GEOPHYSICS;2019-11-01

5. Rock Physics I Complete Session;SEG Technical Program Expanded Abstracts 2017;2017-08-17

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3