Comparative evaluation of multi-basin production performance and application of spatio-temporal models for unconventional oil and gas production prediction

Author:

Wigwe M. E.ORCID,Bougre E. S.,Watson M. C.,Giussani A.

Abstract

AbstractModern data analytic techniques, statistical and machine-learning algorithms have received widespread applications for solving oil and gas problems. As we face problems of parent–child well interactions, well spacing, and depletion concerns, it becomes necessary to model the effect of geology, completion design, and well parameters on production using models that can capture both spatial and temporal variability of the covariates on the response variable. We accomplish this using a well-formulated spatio-temporal (ST) model. In this paper, we present a multi-basin study of production performance evaluation and applications of ST models for oil and gas data. We analyzed dataset from 10,077 horizontal wells from 2008 to 2019 in five unconventional formations in the USA: Bakken, Marcellus, Eagleford, Wolfcamp, and Bone Spring formations. We evaluated well production performance and performance of new completions over time. Results show increased productivity of oil and gas since 2008. Also, the Bakken wells performed better for the counties evaluated. We present two methods for fitting spatio-temporal models: fixed rank kriging and ST generalized additive models using thin plate and cubic regression splines as basis functions in the spline-based smooths. Results show a significant effect on production by the smooth term, accounting for between 60 and 95% of the variability in the six-month production. Overall, we saw a better production response to completions for the gas formations compared to oil-rich plays. The results highlight the benefits of spatio-temporal models in production prediction as it implicitly accounts for geology and technological changes with time.

Publisher

Springer Science and Business Media LLC

Subject

General Energy,Geotechnical Engineering and Engineering Geology

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3