Child/Parent Well Interactions; Study the Solutions to Prevent Frac-Hits

Author:

Haghighat Alireza1,Ewert James1

Affiliation:

1. S&P Global

Abstract

Abstract Maximizing the hydrocarbon recovery for a given unconventional asset often clashes well spacing considerations against completion design. This can result in complex child/parent well interactions that can include frac-hits and reserve reallocation. In planning for a successful field development within the vicinity of producing assets, the risk of frac-hits must be evaluated carefully to minimize any damage and potential profit loss. Multiple factors such as depletion, well spacing, rock properties, and completion design all contribute to the risk of a frac-hit. Understanding the probable cause of a frac-hit allows for appropriate mitigation operations such as parent well pre-loading, re-fracturing, increased offset spacing, and revised completion design to be considered. To evaluate each remedial operation, several unconventional Permian oil wells were studied with Rate Transient Analysis (RTA) to identify well and reservoir characteristics. Based on these results multi-phase/multi-well numerical modeling was performed to evaluate how effective each operation would be to minimize the risk of future frac-hits. Simulation results regarding pressure and production performance of parent/child wells will be presented applying different frac-hit mitigation methods. Pressure build-ups around the wellbore were determined considering parent well shut-in; gas injection and water injection (pre-loading). Water injection resulted in the highest pressure build-ups in the vicinity of the wellbore (which reduces the risk of a frac-hit); however, it takes several months to unload the injected water. Production uplift due to a re-fracturing operation was evaluated with numerical modeling assuming different fracture designs that include the extension of current hydraulic fractures and adding new fractures. The performance of child and parent wells were then investigated by changing the well spacing and completion. Optimum combinations of well spacing and completion designs were determined to maximize child/parent well production and minimize the risk of frac-hits. Finally, the impact of parent well depletion on the productivity of the child well is determined. This work presents a replicable and accessible workflow to assess the impact of multiple frac-hit mitigation methods on reservoir performance.

Publisher

SPE

Reference17 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3