Fracture Height Prediction Model Utilizing Openhole Logs, Mechanical Models, and Temperature Cooldown Analysis with Machine Learning Algorithms

Author:

Khan Abdul Muqtadir1,BinZiad Abdullah2,Subaii Abdullah Al2,Bannikov Denis1,Ponomarev Maksim1,Parkhonyuk Sergey1

Affiliation:

1. Schlumberger

2. Saudi Aramco

Abstract

Abstract Vertical wells require diagnostic techniques after minifrac pumping to interpret fracture height growth. This interpretation provides vital input to hydraulic fracturing redesign workflows. The temperature log is the most widely used technique to determine fracture height through cooldown analysis. A data science approach is proposed to leverage available measurements, automate the interpretation process, and enhance operational efficiency while keeping confidence in the fracturing design. Data from 55 wells were ingested to establish proof of concept.The selected geomechanical rock texture parameters were based on the fracturing theory of net-pressure-controlled height growth. Interpreted fracture height from input temperature cooldown analysis was merged with the structured dataset. The dataset was constructed at a high vertical depth of resolution of 0.5 to 1 ft. Openhole log data such as gamma-ray and bulk density helped to characterize the rock type, and calculated mechanical properties from acoustic logs such as in-situ stress and Young's modulus characterize the fracture geometry development. Moreover, injection rate, volume, and net pressure during the calibration treatment affect the fracture height growth. A machine learning (ML) workflow was applied to multiple openhole log parameters, which were integrated with minifrac calibration parameters along with the varying depth of the reservoir. The 55 wells datasets with a cumulative 120,000 rows were divided into training and testing with a ratio of 80:20. A comparative algorithm study was conducted on the test set with nine algorithms, and CatBoost showed the best results with an RMSE of 4.13 followed by Random Forest with 4.25. CatBoost models utilize both categorical and numerical data. Stress, gamma-ray, and bulk density parameters affected the fracture height analyzed from the post-fracturing temperature logs. Following successful implementation in the pilot phase, the model can be extended to horizontal wells to validate predictions from commercial simulators where stress calculations were unreliable or where stress did not entirely reflect changes in rock type. By coupling the geometry measurement technology with data analysis, a useful automated model was successfully developed to enhance operational efficiency without compromising any part of the workflow. The advanced algorithm can be used in any field where precise fracture placement of a hydraulic fracture contributes directly to production potential. Also, the model can play a critical role in cube development to optimize lateral landing and lateral density for exploration fields.

Publisher

SPE

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3