Impact of Geological Variables in Controlling Oil-Reservoir Performance: An Insight from a Machine-Learning Technique

Author:

Aliyuda Kachalla1,Howell John1,Humphrey Elliot1

Affiliation:

1. University of Aberdeen

Abstract

Summary Predicting oilfield performance is extremely challenging because of the large number of variables that can influence and control it. Traditional methods such as decline-curve analysis have been commonly used but have been shown to have significant shortcomings. In recent years, advances in machine learning (ML) have provided a new suite of tools to tackle complex multivariant problems such as understanding oil-reservoir performance and predicating the final recovery factor. In this study, the application of a random-forest algorithm to train three predictive models and investigate the influence of the various input variables was investigated. To train the algorithm, a database was built that includes information on 32 variables from 93 reservoirs from the Norwegian Continental Shelf. These variables control or potentially influence field performance and include factors that are a function of geology, subsurface conditions, fluids, and the engineering decisions taken in field development. In addition to these controlling parameters, data were also recorded for the fields that record performance. These included information on the estimated recovery factor and production rates. Eighty percent of the data were input into the random-forest algorithm to train the models, whereas 20% were retained to blind test the subsequent models. Model accuracy was measured by comparing actual and predicted observations for each prediction metric using an R2 score, mean square error, and root mean square error. The production-rate model had a mean square error of 0.004, whereas the mean square error for recovery factor was 0.024. Estimates of average monthly depletion rate have a mean square error of 0.0104. Predictor importance estimates indicate that geology/depth-dependent variables such as stratigraphic heterogeneity, reservoir depth of burial, average porosity, and diagenetic impact are among the variables with high importance in predicting recovery factor. When predicting reservoir-oil rate, the most important variables are related to field size, such as cumulative oil produced, number of wells, oil in place (OIP), and bulk rock volume. In this study, we provide data-driven insight into understanding the relationship between subsurface and engineering conditions of reservoir producibility; we also provide a tool for predicating reservoir performance within a basin or region.

Publisher

Society of Petroleum Engineers (SPE)

Subject

Geology,Energy Engineering and Power Technology,Fuel Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3