Predicting Heavy Oil Combustion Kinetics with Machine Learning

Author:

Anderson Timothy I.1,Li Yunan2,Kovscek Anthony R.2

Affiliation:

1. Department of Electrical Engineering, Stanford University

2. Department of Energy Resources Engineering, Stanford University

Abstract

Abstract Heavy oil resources are becoming increasingly important for the global oil supply, and consequently there has been renewed interest in techniques for extracting heavy oil. Among these, in-situ combustion (ISC) has tremendous potential for late-stage heavy oil fields, as well as high viscosity, very deep, or other unconventional reservoirs. A critical step in evaluating the use of ISC in a potential project is developing an accurate chemical reaction model to employ for larger-scale simulations. Such models can be difficult to calibrate, however, that in turn can lead to large errors in upscaled simulations. Data-driven models of ISC kinetics overcome these issues by foregoing the calibration step and predicting kinetics directly from laboratory data. In this work, we introduce the Non-Arrhenius Machine Learning Approach (NAMLA). NAMLA is a machine learning-based method for predicting O2 consumption in heavy oil combustion directly from ramped temperature oxidation (RTO) experimental data. Our model treats the O2 consumption as a function of only temperature and total O2 conversion and uses a locally-weighted linear regression model to predict the conversion rate at a query point. We apply this method to simulated and experimental data from heavy oil samples and compare its ability to predict O2 consumption curves with a previously proposed interpolation-based method. Results show that the presented method has better performance than previously proposed interpolation models when the available experimental data is very sparse or the query point lies outside the range of RTO experiments in the dataset. When available data is sufficiently dense or the query point is within the range of RTO curves in the training set, then linear interpolation has comparable or better accuracy than the proposed method. The biggest advantage of the proposed method is that it is able to compute confidence intervals for experimentally measured or estimated O2 consumption curves. We believe that future methods will be able to use the efficiency and accuracy of interpolation-based methods with the statistical properties of the proposed machine learning approach to better characterize and predict heavy oil combustion.

Publisher

SPE

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3