Machine-Learning-Assisted Identification of Steam Channeling after Cyclic Steam Stimulation in Heavy-Oil Reservoirs

Author:

Li Yu1ORCID,Liu Huiqing1,Jiao Peng1,Wang Qing1ORCID,Liu Dong2,Ma Liangyu2,Wang Zhipeng1,Peng Hao3

Affiliation:

1. State Key Laboratory of Petroleum Resources and Prospecting, China University of Petroleum, Beijing 102249, China

2. China National Offshore Oil Corporation (China), Tianjin 300450, China

3. Guangzhou Institute of Energy Conversion, University of Chinese Academy of Sciences, Guangzhou 510650, China

Abstract

Cyclic steam stimulation (CSS) is one efficient technology for enhancing heavy-oil recovery. However, after multiple cycles, steam channeling severely limits the thermal recovery because high-temperature steam preferentially breaks through to the producers. To solve the issues of steam breakthrough, it is essentially important and necessary to recognize steam channeling. In this work, a machine-learning-assisted identification model, based on a random-forest ensemble algorithm, is developed to predict the occurrence of steam channeling during steam huff-and-puff processes. The set of feature attributes is constructed based on the permeability ratio, steam quality, and steam-injection speed, which provides the reference for the construction of the training-sample set, steam-channeling reconstruction set, and prediction set. Based on the realistic data, the Pearson correlation coefficient is implemented to confirm the linear correlation among different characteristics; thus, the dimension reduction of the characteristic parameters is achieved. The random oversampling method is adopted to treat the unbalanced training-sample set. Our results show that this model can accurately describe the current state of steam channeling and predict steam propagation in the following cycles.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

General Earth and Planetary Sciences

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3