Fracture Hits in Unconventional Reservoirs: A Critical Review

Author:

Gupta Ishank1,Rai Chandra1,Devegowda Deepak1,Sondergeld Carl H.1

Affiliation:

1. University of Oklahoma

Abstract

Summary “Fracture hit” was initially coined to refer to the phenomenon of an infill-well fracture interacting with an adjacent well during the hydraulic-fracturing process. However, over time, its use has been extended to any type of well interference or interaction in unconventional reservoirs. In this study, an exhaustive literature survey was performed on fracture hits to identify key factors affecting the fracture hits and suggest different strategies to manage fracture hits. The impact of fracture hits is dictated by a complex interplay of petrophysical properties (high-permeability streaks, mineralogy, matrix permeability, natural fractures), geomechanical properties (near-field and far-field stresses, tensile strength, Young’s modulus, Poisson’s ratio), completion parameters (stage length, cluster spacing, pumping rate, fluid and proppant amount), and development decisions (well spacing, well scheduling, fracture sequencing). It is difficult to predict the impact of fracture hits, and they affect both parent and child wells. The impact on the child wells is predominantly negative, whereas the effect on parent wells can be either positive or negative. The “child wells” in this context refer to the wells drilled with pre-existing active/inactive well(s) around. The “parent well” refers to any well drilled without any pre-existing well around. Overall, fracture hits tend to negatively affect both the production and economics of lease development. The optimal approach rests in identifying the reservoir properties and accordingly making field-development decisions that minimize the negative impact of fracture hits. The different strategies proposed to minimize the negative impact of fracture hits are simultaneous lease development, thus avoiding parent/child wells (i.e., rolling-, tank-, and cube-development methods); repressuring or refracturing parent wells; using far-field diverters and high-permeability plugging agents in the child-well fracturing fluid; and optimizing stage and cluster spacing through modeling studies and field tests. Finally, the study concludes with a recommended approach to manage fracture hits. There is no silver bullet, and the problem of fracture hits in each shale play is unique, but by using the available data and published knowledge to understand how fractures propagate downhole, measures can be taken to minimize or even completely avoid fracture hits.

Publisher

Society of Petroleum Engineers (SPE)

Subject

Geotechnical Engineering and Engineering Geology,Energy Engineering and Power Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3