Optimization of fracturing technology for unconventional dense oil reservoirs based on rock brittleness index

Author:

Wu Huimei,Zhang Nan,Lou Yishan,Zhai Xiaopeng,Liu Bin,Li Song

Abstract

AbstractThe concept of volume fracturing has revolutionized the conventional limits of low permeability, expanded the effective resource space, and significantly enhanced oil well production in tight oil reservoir development. This paper elucidates the mechanism of volume fracturing technology for tight sandstone reservoirs by considering multiple factors such as the initiation range of multi-fractures, influence of far-well horizontal principal stress on fracture initiation and propagation, degree of natural fractures development, and mechanical parameters of reservoir rock. Through simulation based on the mechanical parameters of reservoir rock, a comparative analysis was conducted between the model-calculated rock fracture pressure value and measured data from fracturing construction wells in the study area. The results revealed that there was a discrepancy within 10% between the model calculations and actual data. By simulating the effects of different injection volumes of fracturing fluid, pumping rates, and perforation methods on the fracture geometry, optimal design parameters for volume fracturing technology were obtained. Additionally, we propose optimization ideas and suggestions for construction parameters applicable to field operations. The simulation results indicate that a minimum recommended fluid volume scale exceeding 1800 m3 is advised for the reservoir. Based on frictional calculations, it is recommended to have an on-site construction rate not less than 18.0 m3/min along with 36–48 holes/section for perforation purposes. The numerical simulation research presented in this paper provides a theoretical reference basis and practical guidance for the application of fracturing network technology in tight sandstone reservoirs.

Funder

National Natural Science Foundation of China Basic theory and control method of Marine deep high temperature and high pressure drilling and completion engineering

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3