Drilling Parameter Optimization in Real-Time

Author:

Oedegaard Sven Inge1,Helgeland Stig1,Mayani Maryam Gholami1,Trebler Andrey1,Bjorkevoll Knut Steinar2,Skogestad Jan Ole2,Lien Morten3,Weltzin Tore3,Rudshaug Bjørn3

Affiliation:

1. eDrilling

2. Sintef Industry

3. Equinor

Abstract

Abstract The objective of this paper is to demonstrate how drilling parameter optimization in real-time provides a drilling team with an Edge-system that can continuously improve performance and avoid problems without the need for subject-matter experts. An Edge-system based on cloud technology with Model based reasoning in Artificial Intelligence (AI) is made to give real-time and forward advice for operational parameters, see (Lahlou et al, 2021) for description. The key enabler for such system is "automatic" auto-calibration of models to be used for multiple forward-looking and what-if to find optimal drilling parameters within the well envelope ahead. A simplified configuration has been made so that the rig-team can operate and maintain the system without the need for subject matter experts. "Automatic" Auto-calibration at stable conditions and/or during ramping conditions removes the need for such experts. Results from testing of the Edge-system on multiple wells from several operators will be presented both related to automatic auto-calibration of real-time prediction models and for optimization of drilling parameters. As expected, a major challenge has been to design a calibration algorithm that improves accuracy of calculations without being kicked out by any data quality issues, and without masking upcoming actual anomalies like kicks, losses and issues related to hole cleaning. This challenge has been approached by using a combination of time-delayed robust calibration methods and testing on a comprehensive set of data from diverse operations.

Publisher

SPE

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3