Drilling Advisory for Automatic Drilling Control

Author:

Lahlou Kenza1,Oedegaard Sven Inge1,Svendsen Morten1,Weltzin Tore2,Bjørkevoll Knut Steinar3,Rudshaug Bjørn2

Affiliation:

1. eDrilling

2. Equinor

3. Sintef

Abstract

Abstract This paper describes a system being developed for providing an optimized real-time decision support with automatic forward-looking and what-if simulations. It will address the challenge of achieving automation, better performance, and avoidance of non-productive time (NPT) in drilling operations. It will additionally address the demanding human support currently required in the entire decision support workflow. The approach includes utilization of Model based reasoning in Artificial Intelligence (AI) with a Digital Twin combined with Machine Learning (ML) and advanced 3D visualization which is a key enabler for operation alerts and optimization. Multiple forward-looking and what-if simulations will also be run in real-time to find optimal parameters for flow, rotation and running speed. A Diagnostic module will detect abnormalities and trigger safeguards. Auto-configuration and auto-calibration will be the key elements for Drilling Advisory system and deployment without the need for back-office support. The personnel involved in the operation (drilling contractor, service provider and operator) will be able to quickly provide the necessary operational input and then the system will be auto-calibrated during the operation. Results will be an Advisory Tool providing the operation with an optimal flow, rotation speed and running speed during Drilling, Tripping, Casing/liner/screen running and cement operations in two applications areas: In front of the driller as an Advisory tool for rigs with legacy drilling control systems not capable of receiving automated instructions. Base for providing direct commands and safeguards to rigs with control systems capable of receiving automated commands of optimal flow, rotation speed and running speed.

Publisher

SPE

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Drilling Parameter Optimization in Real-Time;Day 1 Tue, March 08, 2022;2022-03-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3