Formation Damage Mechanisms Due to Hydraulic Fracturing of Shale Gas Wells

Author:

Elputranto Riza1,Cirdi Ayse Pamir2,Akkutlu I. Yucel2

Affiliation:

1. PERTAMINA, Indonesia

2. Texas A&M University

Abstract

Abstract Much work has been done on hydraulic-fracturing as a well stimulation technique but our understanding of formation damage due to fracturing is limited. This is due to inherent complexity of shale-water interactions under subsurface conditions. Damage is triggered by cold and low-salinity water invasion into the formation. Here, we introduce the formation damage mechanisms as a multi-physics/chemistry problem developing in a region near the fracture-matrix interface. Using high-resolution flow simulation models, we investigate the mechanisms and their impact on natural gas production. The simulation model includes geo-mechanically fully coupled non-isothermal multi-component two-phase flow equations that are developed for a multi-scale porous medium representative of the shale formations. We consider the occurrence of formation damage during two consecutive periods: well shut-in period which is considered to begin with the completion of fracturing and extending 1-2 days; followed by water flow-back and gas production period which takes months. During the early shut-in period, cold water invasion leads to thermal contraction of the matrix and reduces the normal mean stress. These changes improve the formation permeability temporarily, they may create secondary fractures, and modify the capillary pressure and saturations in the water invaded zone. These thermal effects are reduced rapidly, however, due to heat supplied by the reservoir. Osmosis pressure and the associated clay swelling cause the formation matrix to absorb fracturing water, reduce the matrix permeability, and amplify the capillary pressure/saturations. In summary, the well goes to the flowback and production with modified near-fracture conditions. During the water flowback the water saturation near the fracture-matrix interface increases; hence, liquid blockage effect on the gas flow becomes larger than that predicted based on the water imbibition during the shut-in only. This is due to capillary-end-effect developing near the interface during the water flow-back, when the fracturing water is displaced by the gas, i.e., drainage. Clay swelling and stress change continue during the withdrawal of the fluids. Consequently, we observe significant impairment in gas production rates. Only a fraction (<20%) of the injected water is ultimately produced back from the shale gas wells; the rest stays in the fractures and invades into the formation. Our simulation work shows that it is mainly the water in the fractures that are produced. The rest stays in the fractures due to relative permeability effects therein, and in the matrix as capillary-bound water due capillary end effect and to clay-swelling.

Publisher

SPE

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3